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Preface

The purpose of this book is the study of fiber bundles. The concept of a fiber

bundle is one of those ubiquitous concepts in mathematics. Its first appear-

ance was probably in the thirties of the last century within the study of the

topology and geometry of manifolds. However it was not until the publica-

tion of Norman Steenrod’s book [15] in 1951 that a systematic treatment of

the concept was given. In the meantime some other books –not many– on

the subject have appeared. Worthy to be mentioned is Sir Michael Atiyah’s

book [?] on K-Theory, where special fiber bundles are studied, namely the

vector bundles, which constitute the basis for defining K-theory.

We start this book in a very general setup, where we define as fibration

just a continuous map p : E −→ B. Thereon we begin to put some require-

ments to p and according to those, we put an adjective like Serre fibration

for those maps p which have the homotopy lifting property for cubes, or

Hurewicz fibration if the maps p have the homotopy lifting property for all

spaces. We also have the locally trivial fibrations, which are always Serre

fibrations. They are even Hurewicz fibrations whenever the base space B is

paracompact. A special case are the covering maps, which are locally trivial

fibrations whose fibers are discrete spaces.

This book was inspired in the notes of a course given by Dieter Puppe in

Heidelberg some time in the seventies to whom we are deeply grateful. The

influence of Albrecht Dold is also present.

Mexico City, Mexico The authors1

Winter 2011-12

1M. Aguilar and C. Prieto were supported by PAPIIT-UNAM grants IN 101909

and IN 108712.
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Chapter 1

Homotopy Theory of Fibrations

1.1 Introduction

If one wishes to study topological spaces, one way of doing it is the follow-

ing. One may take a cell decomposition (or using cells one constructs a new

space) and one tries to reduce its topological properties to algebraic or com-

binatorial relationships between the boundaries of the cells, for instance, one

can construct simplicial complexes or apply a homology theory.

A second possibility can be illustrated by the following algebraic situation.

One may take an exact sequence

O −→ F
ι−→ E −→ B −→ O

(of groups, say) and ask what possible values of E one can take for given F

and B (for example, E = F ×B is always possible).

It is a useful idea to compare this question with the following topological

situations. The general setup will be as follows. Let p : E −→ B be any

continuous map. The inverse images p−1(b) of points b in B constitute a

“decomposition” of E into “fibers” p−1(b). We get closer to the algebraic

situation described above if all fibers were homeomorphic to each other as

it will be the case in the following examples. The maps p : E −→ B, that

we shall be dealing with will be generically called fibrations, without any

conditions. Later on, according to their particular (lifting) properties, they

will be qualified with a special name, such as trivial fibration, Serre fibration,

Hurewicz fibration, locally trivial fibration, and so on.

1.1.1 Examples. The following should be fibrations.

(a) The topological product defined as follows. Let B and F be topological
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spaces and take the projection

p = proj1 : E = B × F −→ B .

This should be a fibration for any definition, namely, the trivial fibration

or the product fibration.

(b) The Moebius strip defined as follows. Let E be obtained from the

square I× I by identifying for every t ∈ I the pair (0, t) with (1, 1− t).
B is obtained from I by identifying the end points of the interval. B

is thus homeomorphic to S1. The mapping (s, t) 7→ s determines a

continuous map p : E −→ B. Then p−1(s) ≈ I for every s ∈ B (see

Figure 1.1).

p

Figure 1.1

The space E is not homeomorphic to S1×I since the boundary of S1×I
consists of two circles, i.e., it is not connected, but the boundary of E

is a circle, i.e., it is connected. By means of

Bd(M) = {x ∈M | H2(M,M − x) = 0}

one can define the boundary of M = S1 × I, resp. M = E in a topo-

logically invariant way.

(c) The Klein bottle defined as follows. Let E be obtained from I × I by

identifying for every t ∈ I the pair (0, t) with (1, 1 − t) and for every

s ∈ I the pair (s, 0) with (s, 1). Let B = S1 be obtained again as in

(b) and p : E −→ B be induced again by (s, t) 7→ s, then p−1(s) ≈ S1

for every s ∈ B (see Figure 1.2).

The space E is not homeomorphic to the torus S1 × S1. As a proof of

this fact we compute the homology of E using the cell decomposition

shown in Figure 1.3.
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p

Figure 1.2

e2

e0

ẽ1

e0 e1 e0

ẽ1

e0e1

ẽ1

e1e0

Figure 1.3

It consists of one 0-cell e0, two 1-cells e1 and ẽ1 and one 2-cell e2. In

the cellular chain complex one has the following:

∂e2 = 2ẽ1

∂e1 = ∂ẽ1 = 0

∂e0 = 0 ,

from which we obtain

H2(E) = 0 , H1(E) ∼= Z⊕ Z2 .

Similarly, one obtains for the torus S1 × S1

H2(S1 × S1) ∼= Z , H1(S1 × S1) ∼= Z⊕ Z ,

(see [1, 7.3.12]). Since the first and second homology groups of both

spaces are different, they cannot be homeomorphic.

(d) The covering maps, of which a particularly important example will be

the following. Take

p : R −→ S1 ⊂ C ,

x 7−→ e2πix ,
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(cf. Section 1.2). The fibers p−1(s), s ∈ S1, are homeomorphic to Z
(as a set with the discrete topology). One has R ̸≈ S1 × Z since R
is connected while S1 × Z has infinitely many components (see Figure

1.4).

p

Figure 1.4

(e) The tangent bundle of a smooth manifold, of which a concrete example

is the tangent bundle T (Sn) of the sphere Sn ⊂ Rn+1 (cf. 1.6.6 (e)). Let

T (Sn) =
{
(x, v) ∈ Sn × Rn+1 | x ⊥ v

}
be furnished with the relative topology, and take

p : T (Sn) −→ Sn ,

(x, v) 7−→ x .

Consider the restriction of p to

T ′(Sn) = {(x, v) ∈ T (Sn) | v ̸= 0} .

The following is an interesting question: Does there exist a continuous

map s : Sn −→ T ′(Sn) such that p ◦ s = idSn? One such s is called

a section of p. Geometrically, s can be described as a nonvanishing

continuous vector field on Sn.

1.1.2 Exercise. Prove that the fibrations of (b) and (c) have a section and

that, on the contrary, that of (d) does not.

All examples introduced in 1.1.1 are going to be fibrations in a sense that

we still have to state precisely. On the contrary, the following will not be

one, even though all of its fibers are homeomorphic.
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1.1.3 Example. Consider the space E = I×I∪{0}× [0, 2] ⊂ R2, the space

B = I ⊂ R, and p : E −→ B such that p : (s, t) 7→ s, as depicted in Figure

1.5.

(0, 2)

(0, 1)

(0, 0)

(1, 1)

(1, 0)

0 1

p

Figure 1.5

The map p has the following property: Not for every path ω : I −→ B and

for every point x0 ∈ E, such that ω(0) = p(x0), there exists another path

ω̃ : I −→ E such that ω̃(0) = x0 and p ◦ ω̃ = ω; i.e., not for every path in B,

there exists a “lifting” to E with a given origin. For instance, if x0 = (0, 2),

there does not exist ω̃ unless ω is constant in a neighborhood of 0. (It is an

exercise to prove this fact.) See Section 1.4 for a general treatment of this

question.

1.2 General Definitions

In this section we present the general set up on which the rest of this book

is supported.

1.2.1 Definition. (For the time being) we shall call fibration any continu-

ous map p : E −→ B. E will be called the total space and B the base space

of the fibration. Moreover, p−1(b) will be called the fiber over b, (b ∈ B).

1.2.2 Definition. Let p and p′ be fibrations. A pair of maps (f, f) is called

a fiber map from p to p′ if the diagram

E
f //

p

��

E ′

p′

��
B

f

// B′
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is commutative. We denote this by (f, f) : p −→ p′. In case that B = B′

and f = idB we call f a fiber map over B.

The commutativity of the diagram means that f maps the fiber over b into

the fiber over f(b). If now f has the property of mapping fibers into fibers,

then there is a function f : B −→ B′ that makes the diagram commutative.

If p is surjective then the function f is well defined by f . If, moreover, p is

an identification, then f is continuous.

From definition 1.2.2 one may conclude the following.

(1) (idE, idB) : p −→ p is a fiber map.

(2) If (f, f) : p −→ p′ and (g, g) : p′ −→ p′′ are fiber maps, then

(g, g) ◦ (f, f) = (g ◦ f, g ◦ f) : p −→ p′′

is also one.

This means that there is a category, whose objects are fibrations, whose mor-

phisms are fiber maps, and the identity morphisms and the compositions are

given by (1) and (2).

1.2.3 Definition. (g, g) : p′ −→ p is an inverse of (f, f) : p −→ p′ if

(g, g) ◦ (f, f) = idp = (idE, idB)

(f, f) ◦ (g, g) = idp′ = (idE′ , idB′) .

(f, f) is a fiber equivalence if it has an inverse. Two fibrations p, p′ are said

to be equivalent if there is a fiber equivalence between them. They are called

equivalent over B if there is an equivalence of the form (f, idB) : p −→ p′.

If (f, f) is a fiber map and f and f are homeomorphisms, then (f, f) is

an equivalence with inverse (f−1, f
−1
).

1.2.4 Definition. A fibration p is said to be trivial if it is equivalent to a

product fibration (see 1.1.1(a)), that is, if we have a commutative diagram

E
f //

p

��

B′ × F
projB′
��

B
f

// B′



1.2 General Definitions 7

In this case p is equivalent over B to the product fibration projB : B ×
F −→ B, namely, by means of the fiber equivalence((

f
−1 × idF

)
◦ f, idB

)
: p −→ projB .

On the other hand, one cannot say in general that two equivalent fibra-

tions with the same base space B are equivalent over B. For instance, the

fibrations illustrated in Figure 1.6 are equivalent, but they are not equivalent

over B = {0, 1}.

E = , = E′

B = , = B
0 1 0 1

Figure 1.6

1.2.5 Definition. Let p : B −→ E be a fibration and A ⊂ B. Then

pA = p|p−1(A) : EA = p−1(A) −→ A

is called the restriction of the fibration p to A.

1.2.6 Exercise. Prove that if p : E −→ B is trivial, then also pA : EA −→
A is trivial.

1.2.7 Definition. A fibration p is locally trivial if every point b ∈ B has a

neighborhood U such that pU es trivial.

1.2.8 Theorem. Let p : E −→ B be a locally trivial fibration. If B is

connected, then all fibers of p are homeomorphic.

Proof: In a trivial fibration, clarly all fibers are homeomorphic. Let b0 ∈ B
be any point. Then the set

B0 =
{
b ∈ B | p−1(b) ≈ p−1(b0)

}
is open in E, namely let b ∈ B0 and U be a neighborhood of b in B such

that p is trivial over U . Then all fibers over U are homeomorphic and so

U ⊂ B0. Similarly one proves that B − B0 is open in B. Since B0 ̸= ∅ and
B is connected, then B = B0. ⊓⊔
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1.2.9 Examples. The following are locally trivial fibrations.

(a) The Moebius strip fibration p : E −→ S1 is not trivial, but it is lo-

cally trivial. If it were trivial, then there would be a space F and a

homeomorphism f such that the diagram

E
f //

p
��?

??
??

??
? S1 × F

projS1{{ww
ww
ww
ww
w

S1

would be commutative. This implies that f induces a homeomorphism

of the fibers, and so F ≈ I; but we already saw that E ̸≈ S1 × I.
The fibration is locally trivial since S1 can be obtained from I by iden-

tifying the end points. We shall denote the points of S1, resp. E, by

their inverse images in I, resp. I × I. The sets U = S1 − {0} and

V = S1 − {1
2
} are open in S1 and the maps

φ : U × I −→ p−1(U) ,

(u, t) 7−→ (u, t) ,

ψ : V × I −→ p−1(V ) ,

(v, t) 7−→

{
(v, t) if v < 1

2
,

(v, 1− t) if v > 1
2
,

are well defined and describe the local triaviality of p (see Section 1.2.7

and Figure 1.7).

1
2

0

≈

1
2

0

≈

Figure 1.7

(b) In a similarly simple way one can see that the Klein bottle fibration and

the exponential fibration R −→ S1 are locally trivial but not trivial.

(c) On the contrary, example 1.1.3 is not locally trivial (exercise).
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1.3 Further Examples

There are important examples of fibrations, some of which we present in this

section.

1.3.1 Examples. Further examples are the following.

(a) The fibrations over projective spaces defined as follows. Let F = R, C
or H 1 and let d = 1, 2 or 4. Take the following fibrations:

Fn+1 − {0}

p
&&MM

MMM
MMM

MM
Sd(n+1)−1

p′yysss
sss

sss
ss

? _oo

FPn ,

where p is the identification with respect to the equivalence relation

(x0, x1, . . . , xn) ∼ (x′0, x
′
1, . . . , x

′
n) (in Fn+1 − {0}) if and only if there

exists λ ∈ F such that (x0, x1, . . . , xn) = λ(x′0, x
′
1, . . . , x

′
n). p′ is the

restriction to

Sd(n+1)−1 =
{
x ∈ Fn+1 − {0} | ∥x∥2 = x20 + · · ·+ x2n = 1

}
.

FPn is the real, complex or quaternionic projective space of dimension

n. One can prove that FPn is a dn-dimensional manifold.

The fibrations p and p′ are locally trivial. Namely, let Vi = {(x0, x1, . . . , xn) ∈
Fn+1−{0} | xi ̸= 0} and let Ui = pVi. One has that Vi = p−1(Ui), that

is, the sets Ui constitute an open cover of FPn. We shall prove that p

and p′ are trivial over Ui. To see this, we have to define homeomor-

phisms hi and ki that make the following diagrams commute.

Vi
hi //

pUi ��?
??

? Ui × (F− {0}) ,

projUi
vvnnn

nnn
nn

Ui

Vi ∩ Sd(n+1)−1 ki //

p′Ui
''OO

OOO
OOO

Ui × Sd−1

projUi
yyrrr

rrr
r

Ui

Define

hi(x0, x1, . . . , xn) =
(
p(x), |xi|−1∥x∥xi

)
,

where x = (x0, x1, . . . , xn), and define

gi : Ui × (F− {0}) −→ Vi

by

gi(p(x), λ) = ∥x∥−1|xi|λx−1
i (x0, x1, . . . , xn) .

1The fields of real, complex or quaternionic numbers considered as topological spaces
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It is easy to verify that gi is well defined for each i and that hi and gi
are continuous and inverse to each other. Thus hi is a homeomorphism.

ki = hi|Vi∩Sd(n+1)−1 and gi|Ui×Sd−1 are inverse of each other (and have the

desired images), and the diagrams obviously commute with hi and ki.

⊓⊔

(b) The Hopf fibration of the 3-sphere is the special case F = C, n = 1,

d = 2, of the previous example, that we now study in more detail.

Consider the diagram

(z0, z1)_

��

∈ C2 − {0}
��

S3

��

? _oo

CP1

≈��
z0
z1

∈ C ∪ {∞} S2

Here we have a homeomorphism between CP1 and the Riemann sphere

given by the map p : (z0, z1) 7→ z0
z1
, that is an identification. This is

due to the fact that p|S3 is a continuous surjective map from a compact

space to a Hausdorff space. Recall that

S3 =
{
(z0, z1) | |z0|2 + |z1|2 = 1

}
.

We write zν = rνsν with rν ≥ 0 and |sν | = 1, (ν = 0, 1). Then

r1 = (1 − r20)
1
2 and thus every point in S3 is characterized by the

numbers s0, s1 and r = r0. Let

q : S1 × S1 × I −→ S3

(s0, s1, r) 7−→
(
rs0, (1− r2)

1
2 s1

)
.

q is an identification. For r ̸= 0, 1, each (rs0, (1− r2)
1
2 s1) has only one

inverse image. For r = 0, q identifies

(s0, s1, 0) with (s′0, s1, 0) ,

and for r = 1 it identifies

(s0, s1, 1) with (s0, s
′
1, 1) .

Given any two topological spaces X0, X1, the quotient space of X0 ×
X1×I with respect to such an identification (i.e., (x0, x1, 0) ∼ (x′0, x1, 0),

and (x0, x1, 1) ∼ (x0, x
′
1, 1) for all x0, x

′
0 ∈ X0, x1, x

′
1 ∈ X1) is called

the join of X1 and X2 and is usually denoted by X0 ∗X1.
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What we proved above is then that one has a homeomorphism

S1 ∗ S1 ≈ S3 .

From this version of the 3-sphere S3 we can obtain the following: The

points for which r is fixed and r ̸= 0, 1 determine a torus; namely a

space homeomorphic to S1 × S1. On the contrary for r = 0 or 1, they

determine a 1-sphere. Further, the points such that r ≥ 1
2
, resp. r ≤ 1

2

constitute a (space homeomorphic to a) solid torus. Thus we have that

the 3-sphere S3 can be obtained from two solid tori by identifying their

boundaries in such a way that the meridians of one of them corespond

to the parallels of the other (see Figure 1.8). More precisely, we have

S3 ≈ S1 × B2 ⊔ B2 × S1/∼ , (s, t) ∼ (s, t) ∈ S1 × S1 .

Figure 1.8

Now we can describe p : S3 −→ S2 by mapping(
rs0, (1− r2)

1
2 s1

)
7−→

(
r(1− r2)−

1
2

)(s0
s1

)
∈ C ∪ {∞} .

The inverse images of a point in S2 correspond to a fixed value of r.

They constitute a circle that lies on the torus given by the equation

r = constant, if r ̸= 0, 1. If r = 0 or 1, then they determine full circles.

Each of these circles intersects each parallel and each meridian of the

torus exactly once. Every two circles that are inverse images of a point

are knotted. For this, one might analyze the case p−1(0) and p−1(z)

(z ̸= 0,∞), or for two of those circles that lie on the same torus r =

constant.

One might try to study the general map

S1 ∗ S1 −→ S2

[s0, s1, r] 7−→
(
r(1− r2)−

1
2

)(sm0
sn1

)
where m and n are natural numbers. In general one does not obtain

a locally trivial fibration, since the local triviality fails on the points
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r = 0, 1. The inverse images of a point in S2 are again circles that lie

on tori r = constant, but they are multiply knotted. The reader can

think about the case n = 3, m = 2, for which the circles (if r ̸= 0, 1)

are always knotted and build a trefoil knot (see Figure 1.9).

Figure 1.9

The relative position of two of these inverse image tori can be visualized

as follows.

One stretches a (self-intersecting) surface along the first trefoil knot

and chooses one side of it to be the front (i.e., one takes an orientation

of the surface). After traveling along the second trefoil knot in the

adequate sense, then one crosses the surface 2 · 3 = 6 times from the

front to the back.

1.4 Homotopy Lifting

Let I be the unit interval [0, 1] and p : E −→ B be a fibration. We are

interested in the following situation.

(1.4.1)

X × {0}� _

��

h̃0 // E

p

��
X × I

h̃

;;v
v

v
v

v

h
// B

where the square is commutative. When does h̃ exist that makes both tri-

angles commutative?

1.4.2 Definition. We say that p has the homotopy lifting property or the

HLP for the space X if given a pair of maps (h, h̃0) as in (1.4.1), then there

exists h̃ such that (1.4.1) commutes.

We then say that h̃ is a lifting of the homotopy h that starts with h̃0. Or

we say that h lifts to h̃0.
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1.4.3 Theorem. A trivial fibration has the HLP for every space.

Proof: A trivial fibration is equivalent to the product fibration. Therefore,

we can restrict ourselves to the problem

X × {0}� _

��

h̃0 // B × F
projB
��

X × I

h̃
99r

r
r

r
r

h
// B .

Define h̃ by h̃(x, t) = (h(x, t), projBh̃0(x, 0)). ⊓⊔

1.4.4 Examples.

(a) The fibration of example 1.1.3 does not have the HLP for any nonempty

space X, since for instance the homotopy h(x, t) = t cannot be lifted

starting with h̃0(x, 0) = (0, 2).

(b) There are fibrations that have the HLP for a one-point space X = {∗}
but not for X = {∗}×I ≈ I. An example of this is the double covering

of the plane branched at the origin given, say, by

p : C −→ C , z 7−→ z2

|z|
0 7−→ 0 ,

We have to prove that to each path ω : I −→ C there exists a path

ω̃ : I −→ C such that p ◦ ω̃ = ω and such that ω̃(0) ∈ p−1(ω(0)) is

preassigned. Now, since I − ω−1(0) is an open set, it is an at most

countable union of intervals In open in I. Since p|C−{0} is a covering

map (see Section 1.8 below), ω|In can be lifted. Let ω̃n be a lifting. If

0 ∈ In (and ω̃(0) ̸= 0) let ω̃n be such ω̃n(0) = ω̃(0). If we define

ω̃(t) =

{
ω̃n(t) if t ∈ In,
0 if t ∈ ω−1(0),

then ω̃ is such that ω̃(0) is as we wanted, and p ◦ ω̃ = ω. Moreover, ω̃

is continuous, since for t ∈ In, this is clear, and if t0 ∈ ω−1(0), then the

continuity of ω̃ at t0 follows from the fact that |ω̃(t)| = |ω(t)|, that is,
|ω̃(t)− ω̃(t0)| = |ω(t)− ω(t0)| and from the continuity of ω.

Now, if X = I and h : X × I −→ C is given by h(s, t) = (s− 1
2
, t− 1

2
)

there does not exist h̃ for any h̃0, since p restricted to p−1(∂h(I × I))
(that is, the inverse image of the boundary of h(I×I) (see Figure 1.10)
is a twofold-covering map, and h̃ would induce a section of it, fact that

is not true (cf. Section 1.8).



14 1 Homotopy Theory of Fibrations

p

Figure 1.10

1.4.5 Exercise. Prove that if the group Z2 acts on C antipodally, then one

has aan isomorphism C/Z2 ≈ C such that there is a commutative diagram

C
q

||zz
zz
zz
zz p

  A
AA

AA
AA

A

C/Z2 ≈
// C .

1.4.6 Definition. Let X be a topological space and A ⊂ X. We say that

p : E −→ B has the relative homotopy lifting property or the relative HLP

for the pair (X,A) if every commutative square (given by h and h̃0)

X × {0} ∪ A× I h̃0 //
� _

��

E

p

��
X × I

h
//

h̃

77ppppppp
B

admits a map h̃ that makes both triangles commutative.

Even a trivial fibration might not always have the relative HLP as one

can easily see in the case B = {∗}, since in this case, the existence of h̃ such

that the upper triangle commutes implies an extension problem, and this

problem is usually nontrivial (note, however, that the commutativity of the

lower triangle is in this case always trivial).

1.4.7 Theorem. The following statements are equivalent:

(a) p has the HLP for the closed unit ball Bn, n = 0, 1, 2, . . . (Bn = {x ∈
Rn | ∥x∥ ≤ 1} ).
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(b) p has the relative HLP for the pair (Bn, Sn−1), n = 0, 1, 2, . . . .

(c) p has the relative HLP for a CW-pair (X,A).

(d) p has the HLP for every CW-complex X.

Proof: (a) ⇒ (b) Let

k :
(
Bn × I,Bn × {0} ∪ Sn−1 × I

)
−→ (Bn × I,Bn × {0})

be given by

k(x, t) =


(
1+t
2−tx, t

)
if |x| ≤ 1

2
(2− t),(

1
2
(1 + t) x|x| , 2(1− |x|)

)
if |x| ≥ 1

2
(2− t).

k is a homeomorphism of pairs that converts the relative homotopy lifting

problem for the pair (Bn,Sn−1) into a homotopy lifting problem for Bn. See
Figure 1.11.

��������
��������
��������
��������

��������
��������
��������
��������

�����
�����
�����
�����

k−→

Figure 1.11

(c) ⇒ (d) Just take A = ∅.

(d) ⇒ (a) Just observe that Bn is a CW-complex.

(b) ⇒ (c) Let Xn be the n-skeleton of X and let Xn = Xn ∪A. We shall

inductively construct maps

h̃n+1 : (X × {0} ∪Xn × I) −→ E

such that h̃n+1|X×{0}∪Xn−1×I = h̃n and such that the composite p ◦ h̃n = h,

wherever it is defined.

h̃0 : (X × {0} ∪ A× I) −→ E

is already given. Assume that h̃n has already been constructed. Recall that

X × I is a CW-complex with cells of the form

ek × (0, 1) , ek × {0} , ek × {1}
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where ek represents any cell of X (see [1] or [8]).

Let enj be an n-cell of X−A and φj : Bn −→ X be its characteristic map.

Consider

Bn × {0} ∪ Sn−1 × I� _

��

// X × {0} ∪Xn−1 × I
h̃n //

� _

��

E

p

��
Bn × I

φj×id
//

g̃j

22eeeeeeeeeeeeeeeeeeee
X × I

h
// B

By the hypothesis (b), there exists g̃j. Define h̃n+1 by

h̃n+1(x, t) =

{
h̃n(x, t) if (x, t) ∈ X × {0} ∪Xn−1 × I,
g̃j(φ

−1
j (x), t) if x ∈ ej.

h̃n+1 is well defined, extends h̃n and lifts h|X×{0}∪Xn×I .

Moreover, h̃n+1 is continuous. This follows from the fact that φj × id is

an identification and h̃n+1(φj × id) = g̃j. Therefore, h̃n+1 is continuous on

each closed cell of X × {0} ∪ Xn × I (because φj × id is the characteristic

map of the cell enj × (0, 1)).

To finish, define h̃ : X × I −→ E by h̃(x, t) = h̃n(x, t) if (x, t) ∈ Xn × I.
⊓⊔

1.4.8 Definition. A fibration p : E −→ B is said to be a Serre fibration if

one (and hence all) of the statements (a) through (d) in the previous theorem

holds. Moreover, we say that p is a Hurewicz fibration if p has the HLP for

every space.

1.4.9 Theorem. Let p : E −→ B be a fibration and U = {U} be an open

cover of the base space B such that for each U ∈ U , the restriction pU is a

Serre fibration. Then p is also one. (This means that the property of being

a Serre fibration is local with respect to the base space).

Observe that the inverse is clear, as follows from the following exercise.

1.4.10 Exercise. Prove that if p has the HLP for a space X, then any

restriction pA, A ⊂ B, has it too.

1.4.11 Corollary. Every locally trivial fibration is a Serre fibration. ⊓⊔
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Proof of the theorem: We shall use condition (b) of 1.4.7 for each pU and

prove (a) for p. For technical reasons, we substitute the ball Bn with the

homeomorphic cube In.

Subdivide In × I by successively halving the sides until each subcube is

mapped by h into some U ∈ U . Thus we obtain a decomposition of In, whose

k-dimensional subcubes (faces if k < n) will be denoted by V k
i , as well as a

decomposition of I

0 < t1 < t2 < t3 < · · · < 1 .

We shall extend h̃0 step by step along the “layers” In × [tj, tj+1] to finally

obtain a lifting of h. To that end, let V k =
∪
iVi

k.

We shall successively solve the problem

In × {0} ∪ V k−1 × [0, t1]� _

��

h̃k−1
// E

p

��
In × {0} ∪ V k × [0, t1]

h̃k

66mmmmmmmm

h|···
// B ,

k = 0, 1, . . . , n, where h̃0 = h̃0.

Assume that h̃k−1 has already been constructed. Then we can solve the

problem

V k
i × {0} ∪ ∂V k

i × [0, t1]� _

��

h̃k−1|···// p−1U

pu

��

� � // E

p

��
V k
i × [0, t1]

h̃ki

66lllllll

h|···
// U � � // B ,

since pU is a Serre fibration. (Our subdivision of In into subcubes was fine

enough to guarantee the existence of U such that

h(V k
i × [0, t1]) ⊂ U ,

∂V k
i ⊂ V k−1 denotes the boundary of the subcube V k

i .) The maps h̃ki can

now be put together to produce a continuous map h̃k : V k × [0, t1] −→ E

that extends h̃k−1 and lifts h| · · · . We define h̃ by means of h̃|In×[0,t1] = h̃n

on the first layer. The next layers are dealt with in a similar manner. ⊓⊔

An analogous statement to the previous theorem holds also for Hurewicz

fibrations. To state it we need some preparation. We start by recalling the

next definition.

1.4.12 Definition. Let X be a topological space. A partition of unity is a

family of continuous functions {tj : X −→ I}j∈J such that for each x ∈ X,
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tj(x) ̸= 0 only for finitely many j ∈ J , and
∑

j∈J tj(x) = 1. A partition

of unity is called locally finite if every x ∈ X has a neighborhood U with

tj|U ̸= 0 only for finitely many j ∈ J .

The family {Vj = tj
−1(0, 1]}j∈J is called the associated open cover of X

for the given partition of unity. An open cover U = {Uj}j∈J of X is called

numerable if there exists a locally finite partition of unity {tj : X −→ I}j∈J
such that

tj
−1(0, 1] ⊂ Uj.

In this case we say that the partion of unity is subordinate to the cover.

1.4.13 Definition. A topological spaceX is said to be paracompact if every

open cover of X is numerable.

The previous definition is usually presented as a theorem (cf. [13, 7.5.23]).

The following theorem is due to Albrecht Dold [3].

1.4.14 Theorem. Let p : E −→ B be a fibration and U = {Uj}j∈J be an

open cover of B such that pUj is a Hurewicz fibration. Then

(a) if U is numerable, then p is a Hurewicz fibration;

(b) if U is open, then p has the HLP for every paracompact space. ⊓⊔

We omit the proof, since it is quite intrincate and would pull us apart

from the topics we are dealing with. See [3, Thm. 48] for a proof.

Since every CW-complex is paracompact (see [12] or [8]), we have the

following.

1.4.15 Corollary. Let p : E −→ B be a fibration and U = {Uj}j∈J be an

open cover of B such that pUj is a Hurewicz fibration. Then

(a) if B is a CW-complex then p is a Hurewicz fibration;

(b) p has the HLP for every CW-complex. ⊓⊔

Consider the path space XI = {ω : I −→ X} furnished with the compact-

open topology. Given a fibration p : E −→ B, take the fibered product

E ×B BI = {(e, ω) ∈ E ×BI | p(e) = ω(0)} .
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1.4.16 Definition. A continuous map

Γ : E ×B BI −→ EI

is called path-lifting map (PLM) if the following hold:

(a) Γ(e, ω)(0) = e, where (e, ω) ∈ E ×B BI .

(b) pΓ(e, ω)(t) = ω(t), where (e, ω) ∈ E ×B BI and t ∈ I.

1.4.17 Theorem. A fibration p : E −→ B is a Hurewicz fibration if and

only if it has a PLM Γ : E ×B BI −→ EI .

Proof: Assume first that p : E −→ B is a Hurewicz fibration and consider

the lifting problem depicted in the following diagram:

E ×B BI
� _

i0
��

proj1 // E

p

��
E ×B BI × I ε

//

Γ̂

88rrrrrr
B ,

where i0 is the inclusion into the bottom of the cylinder (i0(e, ω) = (e, ω, 0))

and ε(e, ω, t) = ω(t). Since the square is obviously commutative, and the

fibration has the HLP for every space, there exists Γ̂ : E ×B BI × I −→ I,

such that both triangloes commute. Defining Γ : E ×B BI −→ EI by

Γ(e, ω)(t) = Γ̂(e, ω, t) ,

we have the desired PLM.

Conversely, assume that there is a PLM Γ : E×BBI −→ EI for p : E −→
B and assume a general homotopy lifting problem

X
f //� _

i0
��

E

p

��
X × I

h
//

h̃
::v

v
v

v
v

B .

Define h : X −→ BI by h(x)(t) = h(x, t), and consider the composite

h′ : X // E ×B BI Γ // EI

x � // (f(x), h(x)) � // Γ(f(x), h(x)) .

Then h̃ : X × I −→ E given by h̃(x, t) = h′(x)(t) is the desired lifting. ⊓⊔
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1.4.18 Exercise. Proving the existence of PLMs show that the following

are Hurewicz fibrations:

(a) The map BI −→ B, given by ω 7→ ω(1).

(b) The map P (B) = {ω ∈ BI | ω(0) = b0} −→ B, given by ω 7→ ω(1).

This is the so-called path fibration of B (see 3.4.7).

(c) Given f : X −→ B, the map Ef = {(x, ω) ∈ X×BI | f(x) = ω(1)} −→
B, given by (x, ω) 7→ ω(0). The space Ef is the so-called mapping path

space, the fibration is the mapping path fibration, and its fiber over (a

base point) b0 ∈ B, Pf = {(x, ω) ∈ X × BI | ω(0) = b0, f(x) = ω(1)},
is the so-called homotopy fiber of f .

The following result states that every map factors as a homotopy equiv-

alence followed by a Hurewicz fibration (i.e., every map can by replaced by

a Hurewicz fibration, up to a homotopy equivalence). It is an easy exercise

to prove it.

1.4.19 Proposition. Given any continuous map f : X −→ B, the map

φ : X −→ Ef given by x 7→ (x, ex), where ex : I −→ B is the constant path

with value f(x), is a homotopy equivalence. Moreover, there is a commutative

triangle

Ef

f̃
��

X

φ
>>}}}}}}}

f
// B ,

where f̃ is the Hurewicz fibration of 1.4.18 (c). ⊓⊔

The following result will be important later. Given a fibration p : E −→ B

and a subspace A ⊂ B, recall its restriction pA : EA −→ A (see Definition

1.2.5). We have the following result.

1.4.20 Theorem. Assume that p : E −→ B is a Hurewicz fibration and that

both spaces E and B are normal. If i : A ↪→ B is a closed cofibration, then

also ĩ : EA ↪→ E is a closed cofibration.

Before passing to the proof, we recall Theorem [1, 4.1.16], which reads as

follows.
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1.4.21 Lemma. Let B be a normal space. Then an inclusion A ↪→ B is a

closed cofibration if and only if there exist maps u : B −→ I and h : B×I −→
B such that

(i) A ⊂ u−1(0).

(ii) h(b, 0) = b for all b ∈ B.

(iii) h(a, t) = a for all a ∈ A and all t ∈ I.

(iv) h(b, t) ∈ A for all b ∈ B if t > u(b). ⊓⊔

Proof of 1.4.20: We shall apply Lemma 1.4.21. Assume that u and h are as

in that lemma. Since p : E −→ B is a Hurewicz fibration, the lifting problem

E
id //

i0
��

E

p

��
E × I

h◦(p×id)
//

H′
77ooooooo
B

has a solution H ′. Define U : E −→ I by U(e) = up(e), and H : E×I −→ E

by

H(e, t) =

{
H ′(e, t) if t ≤ U(e),

H ′(e, U(e)) if t ≥ U(e).

Then obviously EA ⊂ U−1(0), H(e, 0) = e for all e ∈ E, and H(e, t) = E for

all t ∈ I if e ∈ EA. Thus the first three conditions in 1.4.21 hold. To verify

(iv), assume t > U(e). Then

(1.4.21) pH(e, t) = pH ′(e, U(e)) = h(p(e), up(e)) .

But we have that if s > up(e), then h(p(e), s) ∈ A. Since A ⊂ B is closed, by

the continuity of h, h(p(e), up(e)) ∈ A. Hence, from (1.4.21), H(e, t) ∈ EA.

We have shown that U and H satisfy conditions (i)–(iv), thus EA ↪→ E

is a cofibration. ⊓⊔

The following definition generalizes the construction of the restricted fi-

bration pA : EA −→ A.

1.4.22 Definition. Let p : E −→ B be a fibration and α : A −→ B a

continuous map. We define a new fibration α∗(p) : Ẽ −→ B and a fiber map

(β, α) : α∗(p) −→ p as follows. Take

Ẽ = {(a, z) ∈ A× E | α(a) = p(z)}
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with the relative topology as subspace of A× E.

α∗(p)(a, z) = a

β(a, z) = z .

α∗(p) is called the fibration induced by p through α. Thus one has a com-

mutative diagram

Ẽ
β //

α∗(p)

��

E

p

��
A α

// B .

In case that α : A ↪→ B is an inclusion, the induced fibration α∗(p) is

equivalent to the restriction pA : EA −→ A (cf. 1.2.5).

1.4.23 Exercise. Prove that through a constant map, a trivial fibration is

induced.

1.4.24 Exercise. Let p : E −→ B be a fibration and α : A −→ B be

continuous. Verify the following properties:

(a) If p is injective (resp. surjective), then so is α∗(p).

(b) If p is the product fibration, then α∗(p) is a trivial fibration (see 1.2.4).

(c) If p is locally trivial, then so is α∗(p).

(d) The map α admits a lifting α̃ : A −→ E (namely, a map such that

p ◦ α̃ = α) if and only if α∗(p) admits a section s : A −→ Ẽ (namely, a

map such that α∗(p) ◦ s = idA).

The following is an important result.

1.4.25 Proposition. Let α : A −→ B be continuous. If a fibration p :

E −→ B has the HLP for a space X, then so does α∗(p).

Proof: We have to show that the homotopy lifting problem

X� _

i0
��

h̃0 // Ẽ

α∗(p)

��
X × I

h
//

h̃

<<y
y

y
y

y
A
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has a solution. Consider the following homotopy lifting problem

X� _
i0

��

h̃10 // E

p

��
X × I

α◦h
//

k̃

;;v
v

v
v

v
B ,

where h̃0(x) = (h̃10(x), h̃
2
0(x)) ∈ Ẽ ⊂ A × E. Since p has the HLP for X,

this problem has a solution and thus k̃ : X × I −→ E exists making both

triangles commutative. Define h̃ by

h̃(x, t) = (h(x, t), k̃(x, t)) ∈ A× E .

Obviously, this map is such that h̃ : X × I −→ Ẽ and obviously is a solution

of the initial problem. ⊓⊔

1.4.26 Corollary. Given a fibration p : E −→ B and a map α : A −→ E,

the following hold.

(a) If p is a Serre fibration, then so is α∗(p).

(b) If p is a Hurewicz fibration, then so is α∗(p). ⊓⊔

1.4.27 Definition. Two fibrations p0 : E0 −→ B and p1 : E1 −→ B are

called fiber homotopy equivalent (or to have the same fiber homotopy type)

if there exist fiber-preserving maps, or maps over B, φ : E0 −→ E1 and

ψ : E1 −→ E0, that is, maps such that the triangles

E0
φ //

p0   A
AA

AA
AA

E1

p1~~}}
}}
}}
}

B

and E1
ψ //

p1   A
AA

AA
AA

E0

p0~~}}
}}
}}
}

B

commute, and these maps are such that ψ◦φ ≃B idE0 and φ◦ψ ≃B idE1 , that

is, these composites are fiber homotopic to the identities in the sense that

they are homotopic through homotopies H and K such that the triangles

E0 × I H //

p0◦proj1 ##G
GG

GG
GG

GG
E0

p0~~}}
}}
}}
}

B

and E1 × I K //

p1◦proj1 ##G
GG

GG
GG

GG
E1

p1~~}}
}}
}}
}

B

are commutative.
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1.4.28 Theorem. Let p : E −→ B be a Hurewicz fibration and let G0, G1 :

X × I −→ E be homotopies. Given other homotopies H : p ◦ G0 ≃ p ◦ G1

and K : G0 ◦ i0 ≃ G1 ◦ i0, where i0 : X ↪→ X × I is given by i0(x) = (x, 0),

such that

H(x, 0, t) = pK(x, t) ,

there is a lifting H̃ : X × I × I −→ E of H which is a homotopy from G0 to

G1 and is an extension of K.

Proof: There is a homeomorphism of pairs

λ : (I × I, I × {0}) −→ (I × I, I × ∂I ∪ {0} × I)

as illustrated in Figure 1.12.

λ

Figure 1.12

It is an exercise for the reader to figure out λ explicitly.

Define

f : X × (I × ∂I ∪ {0} × I) −→ E

by

f(x, s, 0) = G0(x, s) ,

f(x, 0, t) = K(x, t) ,

f(x, s, 1) = G1(x, s) .

Then the diagram

X × I × {0} idX×λ|
≈

//

h̃0

((
� _

��

X × (I × ∂I ∪ {0} × I) f //
� _

��

E

p

��
X × I × I

idX×λ
≈ //

h

66

h̃

22eeeeeeeeeeeeeeeeeee
X × I × I

H
//

H̃

66mmmmmmmm
B
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commutes and both the exterior square as well as the right square pose

lifting problems. Since p is a Hurewicz fibration, there exists h̃ (that solves

the exterior problem). Then H̃ = h̃ ◦ (idX × λ)−1 solves the problem on the

right. This is the desired homotopy. ⊓⊔

The following result combines the concept of homotopic maps with that

of equivalent Hurewicz fibrations.

1.4.29 Theorem. Let p : E −→ B be a Hurewicz fibration and let α0, α1 :

A −→ B be homotopic. Then the fibrations α∗
0(p) : Ẽ0 −→ A and α∗

1(p) :

Ẽ1 −→ A induced by p through α0 and α1, respectively, are fiber homotopy

equivalent.

Proof: Let p0 = α∗
0(p) and p1 = α∗

0(p) be the induced fibrations, and let

β0 : Ẽ0 −→ E and β1 : Ẽ1 −→ E be the corresponding projection maps such

that p ◦β0 = α0 ◦ p0 and p ◦β1 = α1 ◦ p1. Given a homotopy F : A× I −→ B

from α0 to α1, there are maps G0 : Ẽ0× I −→ E and G1 : Ẽ1× I −→ E that

solve the lifting problems

Ẽ0
β0 //

� _

i0
��

E

p

��
Ẽ0 × I p0×idI

//

G0

44iiiiiiiiiiii
A× I

F
// B

and Ẽ1
β1 //

� _

i1
��

E

p

��
Ẽ1 × I p1×idI

//

G1

44iiiiiiiiiiiii
A× I

F
// B ,

where i0 and i1 are the inclusions into the bottom and into the top of the

corresponding cylinders, respectively. Let β̃0 : Ẽ0 −→ Ẽ1 be given by

β̃0(a, e) = (a,G0(a, e, 1)) ,

and β̃1 : Ẽ1 −→ Ẽ0 be given by

β̃1(a, e) = (a,G1(a, e, 0)) .

Then

p ◦ (G0 ◦ (β̃1 × idI)) = F ◦ (p0 × idI) ◦ (β̃1 × idI) = F ◦ (p1 × idI) = p ◦G1

and

G0 ◦ (β̃1 × idI) ◦ i0 = G1 ◦ i0 .

Hence, from Theorem 1.4.28, it follows that G1 ≃B G0 ◦ (β̃1× idI). Similarly,

G0 ≃B G1 ◦ (β̃0 × idI). Thus the mappings

Ẽ1 ∋ (a, e) 7−→ (a,G0(β̃1(a, e), 1)) = β̃0β̃1(a, e) ∈ Ẽ1
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Ẽ1 ∋ (a, e) 7−→ (a,G1(a, e, 1)) = (a, e) ∈ Ẽ1 ,

are homotopic (over A), since G1(a, e, 1) = e; similarly, the mappings

Ẽ0 ∋ (a, e) 7−→ (a,G1(β̃0(a, e), 0)) = β̃1β̃0(a, e) ∈ Ẽ0

Ẽ0 ∋ (a, e) 7−→ (a,G0(a, e, 0)) = (a, e) ∈ Ẽ0 ,

are homotopic (over A), that is

β̃0 ◦ β̃1 ≃A idẼ1
and β̃1 ◦ β̃0 ≃A idẼ0

. ⊓⊔

1.4.30 Corollary. If p : E −→ B is a Hurewicz fibration and B is con-

tractible, then p is fiber homotopy equivalent to the trivial fibration B ×
p−1(b) −→ B for any b ∈ B.

Proof: If B is contractible, then idB ≃ cb, where cb : B −→ B is the con-

stant map with value b. Obviously id∗
B(p) is equivalent to p and by 1.4.23

the induced fibration c∗b(p) is trivial. Hence, by 1.4.29, p is fiber homotopy

equivalent to a trivial fibration. ⊓⊔

1.5 Translation of the Fiber

Given a fibration p : E −→ B, a map f0 : X −→ F0 = p−1(b0) from a space

X to the fiber over a point b0 ∈ B, and a path ω : I −→ B in the base space

such that ω(0) = b0 and ω(1) = b1, we wish to translate f0 homotopically in

such a way that at the time t we have a map into the fiber Ft over ω(t). We

have the following.

1.5.1 Definition. Under translation of the fiber we understand the follow-

ing. Consider the problem

X × {0}� _

��

h̃0 // E

p

��
X × I

h
//

h̃

::u
u

u
u

u
B ,

where

h̃0(x, 0) = f0(x) and h(x, t) = ω(t) .

We assume further that p has the HLP for X and X × I (this is not always

the case, as seen in 1.4.4 (b)), then we can solve the problem and there exists

such a map h̃. Since h̃(x, 1) ∈ F1 = p−1(b1) we may define f1 : X −→ F1 by

f1(x) = h̃(x, 1) and say that f1 is obtained from f0 by translation along ω.
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1.5.2 Theorem. Let f0, f
′
0 : X −→ F0 be homotopic maps and let ω, ω′ :

I −→ B be homotopic paths relative to the end points, such that ω(0) =

ω′(0) = b0, ω(1) = ω′(1) = b1. Assume that f1, resp. f
′
1, is obtained from f0

by translation along ω, resp. from f ′
0 by translation along ω′, then f1 and f ′

1

are homotopic.

Proof: Let h̃, resp. h̃′ be a lifting of h, resp. h′, such that h̃(x, 0) = f0(x),

resp. h̃′(x, 0) = f ′
0(x), where h and h′ are given by h(x, t) = ω(t) and

h′(x, t) = ω′(t), respectively. Then we define f1 and f ′
1 by f1(x) = h̃(x, 1)

and f ′
1(x) = h̃′(x, 1).

Let now g : X × I −→ F0 be a homotopy such that g(x, 0) = f0(x)

and g(x, 1) = f ′
0(x), and let λ : I × I −→ B be a homotopy such that

λ(s, 0) = ω(s) and λ(s, 1) = ω′(s), λ(0, t) = b0 and λ(1, t) = b1 for all s, t.

Consider the problem

X × (I × ∂I ∪ {0} × I)� _

��

H̃0 // E

p

��
X × I × I

H
//

H̃

66llllllll
B ,

where
H(x, s, t) = λ(s, t)

H̃0(x, s, 0) = h̃(x, s)

H̃0(x, s, 1) = h̃′(x, s)

H̃0(x, 0, t) = g(x, t) .

Since the pair (X × I × I,X × (I × ∂I ∪ {0} × I)) is homeomorphic to the

pair (X × I × I,X × {0} × I) (see Figure 1.13, and compare with the proof

of 1.4.7), and p has the HLP for X × I, the solution of the problem exists.
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Figure 1.13

Since pH̃(x, 1, t) = H(x, 1, t) = λ(1, t) = b1, F (x, t) = H̃(x, 1, t) defines a

homotopy F : X × I −→ F1 from f1 to f ′
1. ⊓⊔
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1.5.3 Theorem. Let ω1, resp. ω2, be a path from b0 to b1, resp. from b1 to

b2, and assume that f1, resp. f2, is obtained from f0, resp. f1, by translation

along ω1, resp. along ω2. Then f2 is obtained from f0 by translation along

the product path ω1ω2.

Proof: Let h̃1 be the lifting that determines f1 and h̃2 the one that determines

f2. Then the homotopy

h̃(x, t) =

{
h̃1(x, 2t) if 0 ≤ t ≤ 1

2
,

h̃2(x, 2t− 1) if 1
2
≤ t ≤ 1 .

is such that ph̃(x, t) = (ω1ω2)(t), h̃(x, 0) = h̃1(x, 0) = f0(x) and h̃(x.1) =

h̃2(x, 1) = f2(x). ⊓⊔

1.5.4 Definition. Let [X, Y ] denote the set of homotopy classes of maps

X −→ Y . For each path ω : b0 ≃ b1, there is a function Φω : [X,F0] −→
[X,F1] that sends the homotopy class of any map f0 : X −→ F0 to that of

the map f1 : X −→ F1 obtained from f0 by translation along ω.

Theorem 1.5.2 guarantees that the function Φω is well defined, and The-

orem 1.5.3 shows that

Φω2 ◦ Φω1 = Φω1ω2 .

Let ebν : I −→ B be the constant path with value ebν (t) = bν , ν = 0, 1.

Then

Φebν
= id[X,Fν ] ,

as one can easily verify. Moreover, if ω is the inverse path of ω, then by

Theorem 1.5.3 and the previous remark,

Φω ◦ Φω = id[X,F0] and Φω ◦ Φω = id[X,F1] .

This shows, in particular, that Φω is always bijective. Since by 1.5.2 Φω

depends only on the homotopy class of ω, we can summarize all previous

remarks in the following theorem. Before stating it we have a definition.

1.5.5 Definition. For a topological space B we define its fundamental

groupoid Π1(B) as the category whose objects are the points in B, whose

morphisms b0 −→ b1 are the homotopy classes of paths ω : b0 ≃ b1, the iden-

tity morphism of each b is idb = [eb], where eb is the constant path with value

b, and the composition is given by the product of paths [ω1] ◦ [ω0] = [ω0ω1].

We then have the following.
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1.5.6 Theorem. Given a topological space X and a fibration p : E −→ B

that has the HLP for X and X × I, there is a contravariant functor Φ :

Π1(B) −→ Set given in the objects by Φ(b) = [X,F ], F = p−1(b), and in the

morphisms by Φ([ω]) = Φω : [X,F0] −→ [X,F1], Fν = p−1(ω(ν)), ν = 0, 1.

⊓⊔

The fundamental groupoid Π1(B) is a small category, that is, its objects

constitute a set (the underlying set of the space B). Given a map f : B −→
B′, there is a covariant functor f̂ : Π1(B) −→ Π1(B

′) that coincides with f

in the objects and is such that for a path ω : b0 ≃ b1, one has f̂([ω]) = [f ◦ω].
Obviously, the functor f̂ depends only on the homotopy class of f . We have

the following.

1.5.7 Proposition. The assignment B 7→ Π1(B) is a functor from the ho-

motopy category Toph of topological spaces and homotopy classes of maps, to

the category Cat of small categories and functors between them. ⊓⊔

1.5.8 Theorem. Let X and Y be topological spaces and let p : E −→ B

have the HLP for X, Y , X × I and Y × I. If ω is a path in B from b0 to b1
and β ∈ [Y,X], then the following diagram commutes

[X,F0]

Φω
��

β∗
// [Y, F0]

Φω
��

[X,F1] β∗
// [Y, F1] ,

where Fν = p−1(bν), ν = 0, 1. In other words, if α ∈ [X,F0], then (Φω(α)) ◦
β = Φω(α ◦ β), since by definition, β∗(α) = α ◦ β.

Proof: Let f0 : X −→ F0 represent the homotopy class α and g : Y −→ X

represent β. Let moreover h̃ : X × I −→ E be a lifting that determines the

translation of f0. So the homotopy h̃′ = h̃◦ (g× id) : Y ×I −→ E determines

the translation of f ◦ g, as one can see in the diagram

Y × {0} g //
� _

��

X × {0} f0 //
� _

��

E

p

��
Y × I

g×id
//

h̃′

44iiiiiiiiiiii
X × I //

h̃

::u
u

u
u

u
B ,

(y, t) � // (g(y), t) � // ω(t) .

The map y 7→ h̃′(y, 1) provides a representative of Φωβ
∗(α). On the other

hand, f1 ◦ g represents β∗Φω(α), and since h̃′(y, 1) = f1g(y), one gets the

assertion of the theorem. ⊓⊔
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From now on we adopt the following hypothesis: For each fiber Fb =

p−1(b) of a fibration p : E −→ B, b ∈ B, there exists a space Xb with the

same homotopy type of Fb such that p has the HLP for Xb and Xb × I.

Let α0 ∈ [X0, F0] be represented by a homotopy equivalence. We define

φω = Φω(α0) ◦ α−1
0 ∈ [F0, F1] .

If β0 ∈ [X0, F0] is represented by another homotopy equivalence, then by

Theorem 1.5.8 we have

Φω(α0) ◦ α−1
0 = Φω(β0 ◦ β−1

0 ◦ α0) ◦ α−1
0 ◦ β0 ◦ β−1

0

= Φω(β0) ◦ β−1
0 ◦ α0 ◦ α−1

0 ◦ β0 ◦ β−1
0

= Φω(β0) ◦ β−1
0 .

So, Φω is independent of the chosen homotopy equivalence α. Let now α1 ∈
[X1, F1] be a homotopy equivalence. From 1.5.6 and 1.5.8, one has that

φω1ω2 = Φω1ω2(α0) ◦ α−1
0 = Φω2(Φω1(α0)) ◦ α−1

0

= Φω2(α1 ◦ α−1
1 ◦ Φω1(α0)) ◦ α−1

0

= (Φω2(α1) ◦ α−1
1 ◦ Φω1(α0)) ◦ α−1

0

= φω2 ◦ φω1

and

φe0 = Φe0(α0) ◦ α−1
0 = α0 ◦ α−1

0 = [id] ∈ [F0, F0] .

Thus φ is a functor from the fundamental groupoid of B, Π1(B), to the

homotopy category Toph. In particular we have the following.

1.5.9 Theorem. Let p : E −→ B be either

(a) a Hurewicz fibration, or

(b) a Serre fibration such that each of its fibers has the homotopy type of a

CW-complex.

Then there is a functor

φ : Π1(B) −→ Toph

B ∋ b 7−→ p−1(b)

(ω : b1 ≃ b2) 7−→ φω ∈ [p−1(b1), p
−1(b2)] . ⊓⊔

There are some consequences of the previous theorem. Since every mor-

phism in the fundamental groupoid is an isomorphism we have the following.
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1.5.10 Corollary. φω is a homotopy equivalence for every ω. ⊓⊔

Another is the following.

1.5.11 Corollary. If B is path connected (0-connected), then all the fibers

of p have the same homotopy type. ⊓⊔

1.6 Homotopy Sets and

Homotopy Groups

In this section we analyze sets of homotopy classes of pointed maps between

two pointed spaces. We study when these sets have a group structure, and

as special cases, we shall obtain the homotopy groups of a space, and partic-

ularly, its fundamental group.

1.6.1 Definition. Under a pointed topological space we shall understand a

pair (X, ∗) consisting of a topological space X and a base point ∗ ∈ X. A

pointed map between pointed spaces is a continuous map f : X −→ Y such

that f(∗) = ∗. A pointed homotopy is a homotopy h : X× I −→ Y such that

h(∗, t) = ∗ for every t ∈ I.

Pointed spaces and pointed maps build a category, Top∗ that will be the

one we shall work with in this section. Therefore, we shall frequently omit

the adjective “pointed” in the sequel.

1.6.2 Definition. Let X and Y be pointed spaces. We shall denote by

π(X,Y ) the set of pointed homotopy classes of pointed maps a : X −→ Y .

By k : X −→ Y , given by k(x) = ∗, x ∈ X, we denote the constant map

whose homotopy class [k] ∈ π(X,Y ) represents a special element in π(X,Y )

that will be denoted by 0 = [k]. Let f : X ′ −→ X, g : Y −→ Y ′ be (pointed)

maps. We define a function

π(f, g) : π(X, Y ) −→ π(X ′, Y ′)

[a] 7−→ [g ◦ a ◦ f ]

that does not depend on the choice of the representative a ∈ [a]. The follow-

ing rules are easily verified.

π(f ′, g′) ◦ π(f, g) = π(f ◦ f ′, g′ ◦ g) ,
π(idX , idY ) = idπ(X,Y ) ,

π(f, g)(0) = 0 .
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We thus have the following.

1.6.3 Theorem. π is a two-variable functor (contravariant in the first vari-

able and covariant in the second) from the category Top∗ of pointed spaces

and pointed maps to the category Set∗ of pointed sets and pointed functions.

⊓⊔

We shall use the following notatation

g∗ = π(id, g) , f ∗ = π(f, id) .

1.6.4 Definition. Let X and Y be pointed spaces. We define their smash

product X ∧ Y as the quotient space

X ∧ Y = X × Y/X ∨ Y ,

where their wedge sum, or simply wedge, X ∨ Y is defined by X ∨ Y =

X × {∗} ∪ {∗} × Y ⊂ X × Y . The base point of X ∧ Y is the image of

X ∨Y (or of (∗, ∗)) under the quotient map q : X×Y −→ X ∧Y . The point

q(x, y) ∈ X ∧ Y will be denoted by x ∧ y. One has that x ∧ ∗ = ∗ ∧ y = ∗.

1.6.5 Theorem. There are natural pointed homeomorphisms

(1) X ∧ Y ≈ Y ∧X,

(2) (X ∧ Y ) ∧ Z ≈ X ∧ (Y ∧ Z) if X and Z are locally compact, or if X

and Y are compact, or if all involved spaces are compactly generated

and one takes the compactly generated product instead (see [1, 4.3.22],

[13, 6.7] or [16]).

Proof: The homeomorphism in (1) is induced by the homeomorphism T :

X × Y −→ Y ×X given by T (x, y) = (y, x).

For (2) we have the following diagram

X × Y × Z
π×idZ

vvmmm
mmm

mmm
mmm

m
idX×π′

((RR
RRR

RRR
RRR

RR

(X ∧ Y )× Z

��

X × (Y ∧ Z)

��
(X ∧ Y ) ∧ Z

f
//____________ X ∧ (Y ∧ Z) ,

where π, π′ as well as the two vertical maps are identifications. f defines a

bijection such that f((x∧ y)∧ z) = x∧ (y ∧ z). f will be a homeomorphism

when the maps π × idZ and idX × π′ are identifications. This is the case

under the given hypotheses. ⊓⊔
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1.6.6 Examples.

(a) ∗ ∧ Y = ∗.

(b) S0 ∧ Y ≈ Y .

(c) I ∧ Y = CX with 0 ∈ I as the base point is the (reduced) cone of Y .

(See Figure 1.14 (c), where the thick line represents the base point.)

(d) S1 ∧ Y = ΣY is the (reduced) suspension of Y . (See Figure 1.14 (d),

where the thick line represents the base point.)

Y

Y

(c) CY (d) ΣY

Figure 1.14

(e) Let Sn = {x ∈ Rn+1 | ∥x∥ = 1} be the unit n-sphere with ∗ =

(1, 0, 0, ..., 0) as the base point.

There is a pointed homeomorphism

φ : ΣSn = S1 ∧ Sn ≈ Sn+1

given as follows. If we describe the points of S1 by

(cos 2t, sin 2t) , t ∈ [0, π] ,

then φ is given by

φ((cos 2t, sin 2t) ∧ (x0, . . . , xn)) =

=
(
cos2 t+ x0 sin

2 t, x1 sin
2 t, . . . , xn sin

2 t,
√

1−x0
2

sin 2t
)
∈ Sn+1 .

1.6.7 Definition. Let f : X −→ X ′, g : Y −→ Y ′ be pointed maps. We

define f ∧ g : X ∧ Y −→ X ′ ∧ Y ′ by

(f ∧ g) (x ∧ y) = f(x) ∧ f(y).
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f ∧ g is continuous, since in the diagram

X × Y f×g //

q

��

X ′ × Y ′

��
(X ∧ Y )

f∧g
// X ′ ∧ Y ′ ,

q is an identification.

1.6.8 Theorem.

(1) ∧ is a two-variable covariant functor.

(2) ∧ is compatible with the homotopy relation, i.e., if f0 ≃ f1 and g0 ≃ g1,

then f0 ∧ g0 ≃ f1 ∧ g1.

Proof: (1) follows immediately.

(2) is obtained as follows: Let h : I ×X −→ X ′ be a homotopy between

f0 and f1, and let q : X × Y −→ X ∧ Y , q′ : X ′ × Y ′ −→ X ′ ∧ Y ′ be the

respective identifications. Then in the diagram

I ×X × Y h×g //

id×q
��

X ′ × Y ′

q′

��
I × (X ∧ Y ) // X ′ ∧ Y ′

the map id×q is again an identification and therefore the arrow at the bottom

describes a homotopy f0 ∧ g ≃ f1 ∧ g. To prove f ∧ g0 ≃ f ∧ g1 one proceeds
similarly; the general case follows combining the two previous cases. ⊓⊔

1.6.9 Definition. Let S1 = I/{0, 1}, where we denote its points simply

by their inverse images in I. Let 0 ∈ S1 be the base point. Let moreover

f, g : ΣX −→ Y be pointed maps. We define f + g : ΣX −→ Y by

(f + g)(t ∧ x) =

{
f(2t ∧ x) if 0 ≤ t ≤ 1

2
,

g((2t− 1) ∧ x) if 1
2
≤ t ≤ 1.

f + g is well defined and is continuous. If ft and gt are homotopies, then

also ft + gt is one, so that [f ] + [g] = [f + g] defines an operation “+” in

π(ΣX,Y ).

1.6.10 Theorem. (π(ΣX, Y ); +) is a group with the selected element 0 as

neutral element.
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Proof: Observe that, as we did above, one can write a homotopy as a family

ht : X −→ Y , ht(x) = h(x, t) ,

of pointed maps. On the other hand, a path f : I −→ X such that f(0) =

f(1) induces a continuous map f : S1 −→ X (we denote it by the same

symbol).

Associativity: The map

φt(s) =


1
2
s(2− t) if 1 ≤ s ≤ 1

2
,

s− 1
4
t if 1

2
≤ s ≤ 3

4
,

s(1 + t) if 3
4
≤ s ≤ 1,

describes a pointed homotopy φt : S1 −→ S1. By 1.6.8

((f + g) + h) ◦ (φt ∧ x) : S1 ∧X −→ Y

is a homotopy. From the fact that φ0 = idS1 and that ((f+g)+h)◦(φ1∧x) =
f + (g + h) the associativity is obtained.

Neutral element: The map

ψt(s) =

{
s(1 + t) if 0 ≤ s ≤ 1

2
,

t+ (1− t)s if 1
2
≤ s ≤ 1,

gives a homotopy ψt : S1 −→ S1. If k is the constant map, we have that

gt = f ◦ (ψt ∧ idX) : S1 ∧ X −→ Y is a homotopy between g0 = f and

g1 = f + k.

Existence of the inverse: By

f(t ∧ x) = f((1− t) ∧ x)

a continuous map f : ΣX −→ Y is defined. The homotopy χt : S1 −→ S1

given by

χt(s) =

{
2st if 0 ≤ s ≤ 1

2
,

2t(1− s) if 1
2
≤ s ≤ 1,

is such that f ◦ (χ0 ∧ idX) = k and f ◦ (χ1 ∧ idX) = f + f . ⊓⊔

1.6.11 Definition. For the special case X = Sn−1, we define

πn(Y ) = π(ΣSn−1, Y ) , n ≥ 1

and call it the nth homotopy group of Y . In particular, for n = 1 we call it

the fundamental group of Y . This last group is not necessarily abelian.
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1.6.12 Exercise. Prove that the fundamental group π1(X) is the group of

isomorphisms of the base point to itself in the fundamental grupoid Π1(X)

defined above in 1.5.5.

1.6.13 Theorem. Let f : Y −→ Y ′, g : X ′ −→ X be pointed maps. Then

f∗ : π(ΣX,Y ) −→ π(ΣX, Y ′)

and

(Σg)∗ : π(ΣX,Y ) −→ π(ΣX ′, Y ′)

are homomorphisms, where Σg = idS1 ∧ g.

Proof: Let a, b : ΣX −→ Y represent two elements in π(ΣX, Y ). One has

(f ◦ (a+ b)) (t ∧ x) =

{
f ◦ a (2t ∧ x) if 0 ≤ t ≤ 1

2
,

g ◦ b((2t− 1) ∧ x) if 1
2
≤ t ≤ 1,

= ((f ◦ a) + (f ◦ b)) (t ∧ x) ;

hence f∗([a] + [b]) = f∗[a] + f∗[b], and so f∗ is a homomorphism.

On the other hand, the equalities

((a+ b) ◦ (id ∧ g)) (t ∧ x) = (a+ b)(t ∧ g(x))

=

{
a(2t ∧ g(x)) if 0 ≤ t ≤ 1

2
,

b((2t− 1) ∧ g(x)) if 1
2
≤ t ≤ 1,

=

{
a ◦ (id ∧ g) (2t ∧ x) if 0 ≤ t ≤ 1

2
,

b ◦ (id ∧ g) ((2t− 1) ∧ x) if 1
2
≤ t ≤ 1,

= (a ◦ Σg + b ◦ Σg)(t ∧ x) ,

imply that (Σg)∗([a] + [b]) = (Σg)∗[a] + (Σg)∗[b]; therefore, (Σg)∗ is a homo-

morphism. ⊓⊔

1.6.14 Remark. Not every map ΣX ′ −→ ΣX induces a homomorphism

π(ΣX,Y ) −→ π(ΣX ′, Y ). For example, take X = S1, X ′ = S2, Y = S2,

and let h : ΣX ′ = S3 −→ S2 = ΣX be the Hopf fibration 1.3.1 (b). Then

π(S2,S2) = π2(S2) ∼= Z, π(S3, S2) = π3(S2) ∼= Z (cf. Subsection 1.8.2), and

h∗ is given by h∗(n) = n2, therefore, h∗ is not a homomorphism.

To prove the last assertion, the argument is as follows: h has Hopf invari-

ant 1 (see [1, 10.6]) and if f : S2 −→ S2 has degree n ([f ] = n), then f ◦ h
has Hopf invariant n2 · 1. The assignment (g : S3 −→ S2) 7→ (Hopf invariant

of g) induces an isomorphism π3(S2) ∼= Z (cf. [?, ?]).
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1.6.15 Note. By 1.6.5, S1 ∧ (S1 ∧X) = Σ(ΣX) is homeomorphic to (S1 ∧
S1) ∧X through the map s ∧ (t ∧ x) 7→ (s ∧ t) ∧ x. Thus ΣΣX = Σ2X can

be considered as

I × I ×X/(∂I)2 ×X ∪ I2 × ∗
and we can denote the image of (s, t, x) under the identification simply as

s ∧ t ∧ x.

We may define another operation +′ between two maps f, g : Σ2X −→ Y

as follows

(f +′ g) (s ∧ t ∧ x) =

{
f(s ∧ 2t ∧ x) if 0 ≤ t ≤ 1

2
,

g(s ∧ (2t− 1) ∧ x) if 1
2
≤ t ≤ 1,

and analogously to 1.6.9 one can show the compatibility of +′ with the ho-

motopy relation (i.e., +′ induces a well-defined operation in π(Σ2X, Y ) with

k as two-sided neutral element, namely, k+′f ∼= f+′k).

1.6.16 Theorem. + and +′ induce the same group operation in π(Σ2X,Y )

and this group is abelian.

Proof: Take f, f ′, g, g′ : Σ2X −→ Y . One has

((f + g) +′ (f ′ + g′)) (s ∧ t ∧ x) =

=

{
(f + g)(s ∧ 2t ∧ x) if 0 ≤ t ≤ 1

2
,

(f ′ + g′)(s ∧ (2t− 1) ∧ x) if 1
2
≤ t ≤ 1,

=


f(2s ∧ 2t ∧ x) if 0 ≤ s ≤ 1

2
, 0 ≤ t ≤ 1

2
,

g((2s− 1) ∧ 2t ∧ x) if 1
2
≤ s ≤ 1, 0 ≤ t ≤ 1

2
,

f ′(2s ∧ (2t− 1) ∧ x) if 0 ≤ s ≤ 1
2
, 1

2
≤ t ≤ 1,

g′((2s− 1) ∧ (2t− 1) ∧ x) if 1
2
≤ s ≤ 1, 1

2
≤ t ≤ 1,

=

{
(f +′ f ′)(2s ∧ t ∧ x) if 0 ≤ s ≤ 1

2
,

(g +′ g′)((2s− 1) ∧ t ∧ x) if 1
2
≤ s ≤ 1,

= ((f +′ f ′) + (g +′ g′))(s ∧ t ∧ x) .

from there one obtains by taking special values for the maps

f + g ≃ (f +′ k) + (k +′ g) = (f + k) +′ (k + g) ≃ f +′ g ;

f + g ≃ (k +′ f) + (g +′ k) = (k + g) +′ (f + k) ≃ g +′ f ≃ g + f

≃ g + f .

The first of these equation shows that [f ] + [g] = [f ] +′ [g], and the second,

that [f ] + [g] = [g] + [f ]. ⊓⊔
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1.6.17 Definition. The suspension function

Σ : π(X,Y ) −→ π(ΣX,ΣY )

is given by Σ[f ] = [Σf ] if [f ] ∈ π(X, Y ) is the homotopy class of a map

f : X −→ Y and Σf = idS1 ∧ f .

1.6.18 Theorem. The suspension function

Σ : π(ΣX,Y ) −→ π(Σ2X,ΣY )

is a group homomorphism. We shall call it henceforth the suspension homo-

morphism.

Proof: Just observe that one has

Σ(f + g) (s ∧ t ∧ x) = s ∧ (f + g) (t ∧ x)

=

{
s ∧ f(2t ∧ x) if 0 ≤ t ≤ 1

2
,

s ∧ g((2t− 1) ∧ x) if 1
2
≤ t ≤ 1,

=

{
Σf(s ∧ 2t ∧ x) if 0 ≤ t ≤ 1

2
,

Σg(s ∧ (2t− 1) ∧ x) if 1
2
≤ t ≤ 1,

= (Σf +′ Σg) (s ∧ t ∧ x) .

Hence, Σ([f ] + [g]) = Σ[f ] +′ Σ[g] and by 1.6.16 one gets the assertion. ⊓⊔

1.6.19 Remark. (Freudenthal suspension theorem) Under adequate

hypotheses on X and Y , the function Σ : π(X,Y ) −→ π(ΣX,ΣY ) is a

bijection; for example, if πi(Y ) = 0 for i < n, and X is a CW-complex such

that dimX < 2n− 1.

In particular, if X = Sm, Y = Sn, m < 2n− 1, then

Σ : πm(Sn) −→ πm+1(Sn+1)

is an isomorphism (cf. [1, 6.2.4]).

1.7 The Exact Homotopy Sequence

of a Fibration

One of the most useful algebraic tools is that of an exact sequence. In this

section we show how the homotopy sets and groups introduced in the previous

section fit together to yield a long exact sequence.
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We shall work here under the following assumptions: All spaces, maps and

homotopies, as well as all constructions made, will be pointed. It will usually

be easy to distinguish in the new constructed spaces, which is the base point.

The base point will be generically denoted by ∗, as we do for the one-point

space. A map f : X −→ Y will be called nullhomotopic if it is homotopic

to the constant map; this fact will be denoted by f ≃ 0. The fibration

p : E −→ B will always be a Serre fibration, and i : F = p−1(∗) ↪→ E will

denote the inclusion of the fiber (F and E have the same base point). X

will be a CW-complex and ∗ ∈ X will be a 0-cell of some adequate CW-

decomposition.

1.7.1 Lemma. The sequence

π(X,F )
i∗−→ π(X,E)

p∗−→ π(X,B)

is exact as a sequence of pointed sets. That is, the image of i∗, im(i∗) =

i∗(π(X,F )), is equal to the kernel of p∗, ker(p∗) = p−1
∗ (0).

This exactness concept is consistent with the usual exactness concept for

sequences of groups, provided that one takes the neutral elements 0 (that are

the homotopy classes of the constant maps) of the groups as base points.

Proof: im(i∗) ⊂ ker(p∗), since pi(F ) = {∗}.

ker(p∗) ⊂ im(i∗): If [f ] ∈ ker(p∗), then p ◦ f ≃ 0. Let ht : X −→ B be a

homotopy such that h0 = p ◦ f , h1 = k, k the constant map. We apply the

HLP for the pair (X, ∗) (cf. 1.4.7) in the diagram

X × {0} ∪ {∗} × I� _

��

h̃0 // E

p

��
X × I

h
//

h̃

77ooooooo
B

to obtain a lifting h̃ of h, if we define h̃0 by h̃0(x, 0) = f(x) and h̃0(∗, t) = ∗.

Since ph̃(x, 1) = h(x, 1) = ∗, h(x, 1) ∈ F and it determines a map g :

X −→ F by setting g(x) = h(x, 1). Then h̃ : f ≃ i ◦ g, so that one has

i∗[g] = [i ◦ g] = [f ]. Thus [f ] ∈ im(i∗). ⊓⊔

In what follows, we shall define the connecting homomorphism∆ : π(ΣX,B) −→
π(X,F ).
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Let q : I × X −→ ΣX = I × X/∂I × X ∪ I × {∗} be the natural

identification. For each f : ΣX −→ B, f ◦ q is a homotopy. The problem

{0} ×X ∪ I × {∗} const //
� _

��

E

p

��
I ×X q

//

h̃

44iiiiiiiiiiii
ΣX

f
// B

has a solution under our general assumptions.

The equality ph̃(1, x) = fq(1, x) = f(∗) = ∗ means that there exists a

(unique) map g : X −→ F such that g(x) = h̃(1, x).

If g is obtained from f as shown above, we shall briefly say that g corre-

sponds to f (through h̃).

1.7.2 Lemma. If f0, f1 : ΣX −→ B are homotopic, and g0 and g1 corre-

spond to f0 and f1, respectively, then g0 and g1 are homotopic.

Proof: Let h̃ν : I×X −→ E be the homotopy through which gν is constructed

starting from fν (ν = 0, 1), and let ft be a homotopy between f0 and f1.

Consider the problem

{0} × (I ×X) ∪ I × (∂I ×X ∪ I × {∗}) H̃0 //
� _

��

E

p

��
I × I ×X

H
//

H̃

33gggggggggggggg
B

where H̃0 and H are defined by

H(s, t, x) = ft(s ∧ x) ,
H̃0(0, t, x) = ∗ ,
H̃0(s, t, ∗) = ∗ ,
H̃0(s, 0, x) = h̃0(s, x) ,

H̃0(s, 1, x) = h̃1(s, x) .

The HLP for the pair (I×X, ∂I×X∪I×{∗}) provides us with the existence of

H̃. Since pH̃(1, t, x) = H(1, t, x) = ∗, H̃ determines a homotopy g′t : X −→
F through g′t(x) = H̃(1, t, x), where g′0 = g0 and g′1 = g1; g

′
t is thus the

desired homotopy. ⊓⊔

1.7.3 Definition. Define ∆ by

∆[f ] = [g] ,

where [f ] ∈ π(ΣX,B) and g : X −→ F corresponds to f .
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1.7.4 Lemma. The sequence

π(ΣX,E)
p∗−→ π(ΣX,B)

∆−→ π(X,F )
i∗−→ π(X,E)

is exact.

Proof: im(∆) ⊂ ker(i∗): If g : X −→ F corresponds to f : ΣX −→ B, then

let h̃ : I ×X −→ E be the homotopy through which g is defined (cf. 1.7.3).

h̃ is a homotopy that starts with k (the constant map) and ends with i ◦ g.
Thus i∗∆[f ] = i∗[g] = [i ◦ g] = [k] = 0.

im(∆) ⊃ ker(i∗): Take g : X −→ F and let h̃ : I × X −→ E be a

(null)homotopy such that h̃(0, x) = ∗ and h̃(1, x) = ig(x) = g(x) ∈ F .

Let moreover h = p ◦ h̃. Since h(∂I × X ∪ I × {∗}) = {∗}, the map h is

compatible with the identification q and so it determines a continuous map

f : ΣX −→ B such that f ◦ q = h. In a diagram

I ×X q //

h $$I
III

III
II

ΣX

f||x
x
x
x

B .

Clearly, g corresponds to f through h̃, that is, ∆[f ] = [g]. Thus [g] ∈ im(∆).

im(p∗) ⊂ ker(∆): Take f̃ : ΣX −→ E and consider the commutative diagram

{0} ×X ∪ I × {∗} const //
� _

��

E

p

��
I ×X q

//

h̃

33ggggggggggggggggggggggggggggg
ΣX

p◦f̃
//

f̃

77pppppppppppppp
B ,

where h̃(t, x) = f̃(t ∧ x). Thus g : x 7→ h̃(1, x) = f̃(1 ∧ x) = ∗ corresponds
to f = p ◦ f̃ . In other words, ∆p∗[f̃ ] = ∆[f ] = [g] = [k] = 0.

im(p∗) ⊃ ker(∆): If g : X −→ F corresponds to f : ΣX −→ Y through

h̃ : I × X −→ E, and is such that [g] = ∗, then let gt : X −→ F be a

nullhomotopy such that g0 = g and g1 = k, and define h̃′ : I ×X −→ E by

h̃′(t, x) =

{
h̃(2t, x) if 0 ≤ t ≤ 1

2
,

g2t−1(x) if 1
2
≤ t ≤ 1.

The map h̃′ is compatible with the identification q : I × X −→ ΣX and

therefore it defines a map f̃ : ΣX −→ E such that q ◦ f̃ = h̃′. Now,

p ◦ f̃ = f + k ≃ f . Thus p∗[f̃ ] = [f ], i.e., [f ] ∈ im(p∗). ⊓⊔
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1.7.5 Lemma. ∆ : π(Σ2X,B) −→ π(ΣX,F ) is a homomorphism.

Proof: Take fν : Σ2X −→ B, ν = 1, 2, and let gν correspond to fν through

h̃ν . Add f1 and f2 with respect to the second coordinate (see 1.6.15, 1.6.16).

Defining h̃ : I × ΣX −→ E by

h̃(t, s ∧ x) =

{
h̃1(t, 2s ∧ x) if 0 ≤ s ≤ 1

2
,

h̃2(t, (2s− 1) ∧ x) if 1
2
≤ s ≤ 1,

one obtains the following commutative diagram.

{0} × ΣX ∪ I × {∗} const //
� _

��

E

p

��
I × ΣX q

//

h̃

33gggggggggggggggggggggggggggggg
Σ2X

f1+′f2

// B .

Thus the map g given by

g(s ∧ x) = h̃(1, s ∧ x) =

{
g1(2s ∧ x) if 0 ≤ s ≤ 1

2
,

g2((2s− 1) ∧ x) if 1
2
≤ s ≤ 1,

= (g1 + g2)(s ∧ x) ,

corresponds to f1 +
′ f2 through h̃, i.e., ∆([f1] + [f2]) = ∆[f1 +

′ f2] = [g] =

[g1 + g2] = [g1] + [g2] = ∆[f1] + ∆[f2]. ⊓⊔

In what follows we set πn(X, Y ) = π(ΣnX,Y ), n = 0, 1, 2, . . . .

1.7.6 Theorem. Given a Serre fibration p : E −→ B and a pointed CW-

complex X, the long sequence

· · · ∆−→ πn(X,F )
i∗−→ πn(X,E)

p∗−→ πn(X,B)
∆−→ πn−1(X,F )

i∗−→
−→ · · · ∆−→ π0(X,F )

i∗−→ π0(X,E)
p∗−→ π0(X,B)

is exact, and all arrows (maybe excepting the last three) represent group ho-

momorphisms.

The proof combines 1.7.1, 1.7.4 and 1.7.5. ⊓⊔

1.7.7 Exercise. Let f : Y −→ X be a map between CW-complexes. Prove

that the diagram

πn(X,F )
i∗ //

(Σnf)∗

��

πn(X,E)
p∗ //

(Σnf)∗

��

πn(X,B) ∆ //

(Σnf)∗

��

πn−1(X,F )

(Σn−1f)∗

��
πn(Y, F )

i∗ // πn(Y,E)
p∗ // πn(Y,B) ∆ // πn−1(Y, F )

commutes.
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In general, π(X,F ) does not have a group structure; ∆ is not a homo-

morphism in those cases. However, it is true that ∆ sends the right cosets

of im(p∗) exactly onto one element. We have the following.

1.7.8 Theorem. ∆α0 = ∆α1 if and only if α0 − α1 ∈ im(p∗).

Proof: Assume that ∆α0 = ∆α1. Let fν represent αν , and let gν correspond

to fν through a homotopy h̃ν , ν = 0, 1. By assumption, g0 ≃ g1, say via the

homotopy gt. If we define a map l : ΣX −→ E by

l(s ∧ x) =


h̃0(4s, x) if 0 ≤ s ≤ 1

4
,

g4s−1(x) if 1
4
≤ s ≤ 1

2
,

h̃1(2− 2s, x) if 1
2
≤ s ≤ 1,

then we have that p ◦ l = (f0 + k) + f 1 (f 1 is the inverse of f1), since by

definition of h̃ν , one has that ph̃ν(s, x) = fν(s ∧ x). Passing to homotopy

classes we have

p∗[l] = [p ◦ l] = [f0] + [k] + [f 1] = [f0]− [f1] = α0 − α1 ∈ im(p∗) .

Conversely, let us suppose that α0 − α1 ∈ im(p∗). More specifically, α0 =

p∗(β)+α1. Choose representatives f1 of α1 and l of β and take f0 = p◦ l+f1
as a representative of α0.

If g1 corresponds to f1 through h̃1, then define h̃0 by

h̃0(s, x) =

{
l(2s ∧ x) if 0 ≤ s ≤ 1

2
,

h̃1(2s− 1, x) if 1
2
≤ s ≤ 1,

to obtain that p ◦ h̃0 = (p ◦ l + f1) ◦ q = f0 ◦ q, so that h̃0 lifts f0 ◦ q. Since

h̃0(1, x) = h̃1(1, x) = g1(x), then g1 also corresponds to f0, that is,

∆α1 = ∆[f1] = [g0] = ∆[f0] = ∆α0 .

⊓⊔

1.7.9 Theorem. If i : F ↪→ E is nullhomotopic, then

∆ : πn(X,B) −→ πn−1(X,F )

has a right inverse homomorphism (if n ≥ 2).
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Proof: Assume first that n = 2 and let g be a pointed nullhomotopy of i,

that is, g : I × F −→ E and g(1, y) = y = i(y), g(0, y) = ∗, g(t, ∗) = ∗. For
each f : ΣX −→ F that represents [f ] ∈ π1(X,F ), via the diagram

I × F g // E

p

��
I × ΣX

id×f

OO

q
// Σ2X

Gf
//___ B

one defines a map Gf . If f0 ≃ f1 through a homotopy ft, then Gf0 ≃ Gf1
via Gft, since the homotopy (Gft) ◦ q is compatible with the identification

q, i.e., if (Gft) ◦ q is a homotopy, then (Gft) is a homotopy. Thus G induces

a function

Γ : π1(X,F ) −→ π2(X,B) .

Γ is a homomorphism, since one easily shows that G(f1 + f2) = Gf1 +
′ Gf2

(cf. 1.6.15).

To see that ∆Γ = idπ1(X,F ), we have to construct a map that corresponds

to Gf using the diagram

{0} × ΣX ∪ I × {∗} const //
� _

��

E

p

��
I × ΣX q

//

h̃

33ggggggggggggggg
Σ2X

Gf
// B .

But setting h̃ = g ◦ (id × f) (cf. 1.7.9) one gets h̃(1, z) = g(1, f(z)) = f(z).

Thus f corresponds to Gf through h̃, and so ∆Γ[f ] = ∆[Gf ] = [f ].

For any n > 2, just replace X in the previous case with Σn−1X. ⊓⊔

1.8 Applications

In this section, we explain some particular instances of (locally trivial) fibra-

tions that have special interest in algebraic topology.

1.8.1 Covering Maps

One of the most useful tools of algebraic topology for computing the funda-

mental group of a space is the concept of a covering map, that we analyze

succintly in what follows. See [13] or [1] for a thorough treatment.
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1.8.1 Definition. A covering map is a locally trivial fibration such that

each fiber is discrete.

1.8.2 Theorem. In a covering map, the path lifting is unique. That is, if

p : E −→ B is a covering map, ω : I −→ B is a path and x0 ∈ E is a point

such that p(x0) = ω(0), then there exists a unique path ω̃ : I −→ E such that

p ◦ ω̃ = ω and ω̃(0) = x0.

Proof: Let ω̃0 and ω̃1 be liftings of ω. We apply the HLP to the pair (I, ∂I)

to obtain in the diagram

{0} × I ∪ (I × ∂I) h̃0 //
� _

��

E

p

��
I × I

h̃

77ooooooo

h
// B

a map h̃, where h(t, s) = ω(t), h̃0(0, s) = x0, h̃0(t, 0) = ω̃0(t), h̃0(t, 1) =

ω̃1(t). For fixed t, the mapping s 7→ h̃(t, s) defines a continuous map into

the fiber over ω(t), and is thus constant, since the fiber is discrete. Hence

ω̃0(t) = h̃(t, 0) = h̃(t, 1) = ω̃1(t). ⊓⊔

Of course, the previous theorem and its proof are still valid if p is a Serre

fibration and each fiber admits only constant paths.

1.8.3 Corollary.

(a) For a covering map, the homotopy lifting is unique. (This follows since

a homotopy is nothing else but a family of paths.)

(b) For a covering map, the translation of the fiber along a path in B is

unique. (This follows from the fact that in order to translate a fiber

one has to lift a particular homotopy.) ⊓⊔

In what follows we shall consider again pointed spaces, pointed maps,

pointed homotopies, etc.

1.8.4 Lemma. If X is connected and Y is discrete, then π(X, Y ) = 0. In

particular, for Y discrete and any X, πn(X, Y ) = 0 for n ≥ 1, since ΣX is

0-connected (path connected). ⊓⊔
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Let p : E −→ B be a covering map. From the long homotopy exact

sequence

· · ·−→πn(X,F )−→πn(X,E)−→πn(X,B)−→πn−1(X,F )−→· · ·

and the fact that by 1.8.4, πn(X,F ) = 0 if n ≥ 2, one gets the following.

1.8.5 Theorem. For a covering map p : E −→ B,

p∗ : πn(X,E) −→ πn(X,B)

is an isomorphism if n ≥ 2 and a monomorphism if n = 1. ⊓⊔

If we apply the previous theorem to the covering map p : R −→ S1

(cf. 1.1.1(d)), since π(X,R) = 0 because R is contractible, then we obtain

the following.

1.8.6 Theorem. πn(S1) = 0 for n ≥ 2. ⊓⊔

For a locally trivial fibration p : E −→ B one has the following.

1.8.7 Proposition. If B is connected, then p is surjective (see 1.2.8). ⊓⊔

Suppose that in the covering map p : E −→ B, the total space E is 0-

connected (i.e., π0(E) = 0), and that B is connected. Then B es 0-connected.

The exact sequence

π1(E)
p∗−→ π1(B)

∆−→ π0(F )
i∗−→ π0(E) = 0 ,

together with 1.7.8, gives the following.

1.8.8 Theorem. Let p : E −→ B be a covering map. Then π1(B)/im(p∗) ∼=
π0(F ) (as sets, since im(p∗) does not have to be a normal subgroup of π1(B)

(cf. for instance [7, III.17.1]). ⊓⊔

Since F is discrete, π0(F ) = F . Therefore, F has at most as many

elements as π1(B); in particular, we have the following.

1.8.9 Corollary. Let p : E −→ B be a covering map. If B is 1-connected

(simply connected), that is, if π1(B) = 0, then p is a homeomorphism.
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Proof: p is bijective, since π0(F ) = 0, and p−1 is continuous, since the pro-

jection p of a locally trivial fibration is an open map. ⊓⊔

In particular, B = Sn does not admit nontrivial covering maps with path-

connected total space if n ≥ 2.

If E is simply connected, we have an isomorphism of sets

π1(B) ∼= π0(F ) ∼= F .

Considering the special case of the covering map

p : R −→ S1

(cf. 1.1.1(d)), we obtain the following.

1.8.10 Theorem. There is a group isomorphism π1(S1) ∼= Z.

Proof: Let ωn,m : I −→ R be the path t 7→ m+nt fromm tom+n, m,n ∈ Z.
Any other path ω′ from m to m+n is homotopic to ωm,n, since hs : I −→ R,
given by

t 7−→ (1− s)ωm,n(t) + sω′(t)

is a homotopy from ωm,n to ω′ relative to the end points.

In particular,

ω0,m + ωm,n ≃ ω0,m+n .

Each path ω : I −→ S1 with ω(0) = ω(1) can be lifted to ω̃ : I −→ R, so
that ω̃(0) = 0 and ω̃(1) = k (for some k ∈ Z). One has

ω = p ◦ ω̃ ≃ p ◦ ω0,k = p ◦ ωn,n+k .

Take λk = p ◦ ω0,k. Since

[λk] + [λl] = [p ◦ ω0,k] + [p ◦ ωk,k+l]
= [p ◦ ω0,k+l]

= [λk+l] ,

we have that [λ1] generates π1(S1). Therefore, π1(S1) is cyclic and infinite as

a set. Hence it is free. ⊓⊔



48 1 Homotopy Theory of Fibrations

1.8.2 Spherical Fibrations

There are cases in which special fibers, base spaces, or even total spaces of a

given fibration make the long homotopy exact sequence collapse. One obtains

short exact sequences or even isomorphisms that provide us with valuable

information. In what follows, we shall analyze cases in which one or more of

those spaces are spheres.

We assume well known that

πi(Sn) = 0 if i < n, and πn(Sn) = Z if n ≥ 1

(see [1, 5.1.22] or [7, IV.2]; see also 1.6.19).

Take n ≥ 1 and consider the fibrations 1.3.1

p : Sd(n+1)−1 −→ FPn

with fiber embedding

i : Sd−1 ↪→ Sd(n+1)−1 .

The map i is nullhomotopic. Thus, from the homotopy exact sequence of p,

we obtain the short exact sequences

0 −→ πj(Sd(n+1)−1)
p∗−→ πj(FPn)

∆−→ πj−1(Sd−1) −→ 0 .

If j ≥ 2, then by Theorem 1.7.9 we know that this sequence splits. Let

us consider individual cases.

1.8.11 Examples. The following special cases are interesting:

1. n = d = j = 1.

Then RP1 ≈ S1. Thus p∗ is multiplication by 2. The sequence does not

split in this case. The exact sequence is then isomorphic to

0 −→ Z 2−→ Z −→ Z2 −→ 0 .

2. d = j = 1, n > 1. Then π1(S1(n+1)−1) = π1(Sn) = 0, thus

π1(RPn) ∼= π0(S0) ∼= Z2 ,

∼= first as sets, but also as groups, since there is only one group with

two elements.
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3. d = 1, j ≥ 2, n ≥ 2.

Since πj(S0) = 0, we obtain

πj(Sn) ∼= πj(RPn) .

4. d = 4, j ≥ 2.

From Theorem 1.7.9 one has

πj(HPn) ∼= πj(S4n+3)⊕ πj−1(S3) .

For n = 1, in particular, one has

πj(S4) ∼= πj(S7)⊕ πj−i(S3) .

1.8.12 Note. The homeomorphism FP1 ≈ Sd can be given similarly to the

case F = C (cf. 1.3.1 (b)). Namely, via

F2 − {0} ⊃ Sd(n+1)−1 ∋ (w0, w1) 7−→ w0w
−1
1 ∈ F ∪ {∞} ∼= Sd .

(Exercise).

5. d = 2, n ≥ 1.

One has

πj(CPn) ∼=

{
Z if j = 2,

πj(S2n+1) if n = 1,

since πj−1(S1) = 0 if j ̸= 2 (cf. 1.8.6). In particular, one has (for n = 1)

that

πj(S2) ∼= πj(S3) if j > 2 .

1.8.13 Remark. With the help of the Cayley numbers (octonians), one can

construct an analogous fibration to the previous ones

S7 ↪→ S15 −→ S3

(cf. [15, 20.6]) and conclude from it that

πj(S8) ∼= πj(S15)⊕ πj−1(S7) if j ≥ 1 ,

(it is nontrivial if j ≥ 8).
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1.8.3 Fibrations with a Section

Sections play an important role in many aspects of the theory and applica-

tions of the fibrations. We analyze here some implications of the existence

of a section for a given fibration.

1.8.14 Definition. Let F ↪→ E
p−→ B be a fibration. A map s : B −→ E

is called a section of p if p ◦ s = idB.

Given a section s : B −→ E of a fibration p : E −→ B, s∗ is in the exact

sequence

πj(F )
i∗ // πj(E)

p∗ //
πj(B)

s∗
oo

a right inverse of p∗. Thus p∗ is surjective, s∗ is injective and the sequence

splits. Hence, for j ≥ 2 one has

πj(E) ∼= πj(F )⊕ πj(B) .

This last equation is valid, in particular, for the product fibration p : E =

F ×B −→ B and in this case one may easily check it directly. In this sense,

a fibration with section behaves as a product with respect to the homotopy

groups (cf. Sections 1.1 and 1.2).

If n is odd, the unitary tangent bundle p : ST (Sn) −→ Sn of the unit

tangent vectors to the sphere Sn has a section, namely, the map s : Sn −→
ST (Sn) = {(x, y) ∈ Sn × Sn|x ⊥ y} given by

s(x) = s(x0, . . . , xn) = (x, (−x1, x0,−x3, x2, ...,−xn, xn−1)) .

Thus we have the following result.

1.8.15 Proposition. There is an isomorphism

πj(ST (Sn)) ∼= πj(Sn−1)⊕ πj(Sn) if j ≥ 2 .
⊓⊔



Chapter 2

Fiber Bundles

2.1 Introduction

2.2 Topological Groups

2.2.1 Definition. A topological group G is a topological space G together

with a group structure such that the function

ν : G×G −→ G ,

(g, h) 7−→ g−1 · h ,

is continuous. We frequently write gh instead of g · h for the product of

g, h ∈ G. Sometimes, when the group is additive, we write g + h. In the

former case we write 1 or once in a while e for the neutral element of G; in

the latter case we write 0 for it.

2.2.2 Exercise. Prove that the maps µ and ι given by

µ : G×G −→ G ,

(g, h) 7−→ g · h ,

ι : G −→ G ,

g 7−→ g−1 ,

are continuous if and only if the map ν : G × G −→ G given above is

continuous.

2.2.3 Examples.
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1. Let (Rn,+), resp. (Cn,+), be the real, resp. complex, n-dimensional

vector space with the usual topology and the usual sum of vectors.

They both are topological groups for every n.

2. Let GLn(R) be the set of real invertible n× n matrices with the group

structure given by matrix multiplication and the topology given as

follows. Fix an ordering of the entries of each matrix, so that it can be

considered as an n2-tuple of real numbers, i.e., as an element of Rn2
.

This way, GLn(R) can be seen as an (open) subspace of Rn2
with the

relative topology. In this case, ν is continuous, since the entries of the

product matrix AB−1 are rational functions of the entries of A and B.

Thus GLn(R) is a topological group. In particular, the group GL1(R)
is the multiplicative group of the nonzero real numbers, also written as

R∗. The group GLn(R) is called the general linear group of real n× n
matrices.

3. Let GLn(C) be the set of complex invertible n × n matrices with the

group structure and topology analogous to the previous example. Simi-

larly, GLn(C) is a topological group. In particular, the group GL1(C) is
the multiplicative group of the nonzero complex numbers, also written

as C∗. The group GLn(C) is called the general linear group of complex

n× n matrices.

2.2.4 Theorem. Every subgroup H of a topological group G with the relative

topology is a topological group.

Proof: Let µ′ be the induced multiplication in H. Let i : H ↪→ G be the

inclusion. iµ′ = µ|H×H is continuous, and since H has the relative topology,

µ′ is continuous. Similarly, one proves that the map sending an element in

H to its inverse is continuous. ⊓⊔

2.2.5 Examples.

1. The following are important subgroups of GLn(R):

SLn(R) = {A ∈ GLn(R) | det(A) = 1}

is the special linear group of real n× n matrices.

On = {A ∈ GLn(R) | AA∗ = 1} ,

where A∗ is the transposed matrix of A and 1 is the unit matrix, is the

orthogonal group of n× n matrices.

SOn = On ∩ SLn(R)
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is the special orthogonal group of n× n matrices.

All these subgroups are closed in GLn(R). SLn(R) for being the inverse

image of the closed set {1} ⊂ R under the continuous map A 7→ det(A).

That On is closed can be proved as follows. Let A = (aij) ∈ On. Then

the matrix AA∗ has entries
∑n

k=1 akiakj. Therefore, On is the inverse

image of the closed set {1} ⊂ GLn(R) under the continuous mapping

A = (aij) 7−→
n∑
k=1

akiakj ,

where 1 denotes the unit matrix, with ones in the diagonal and zeroes

elsewhere. The subgroup SOn is closed, since it is the intersection of

two closed subgroups. Since On ⊂ Rn2
is clearly bounded, the groups

On and SOn are even compact.

2. The following are special cases:

O1 = {1,−1} = Z2 = S0 ,

SL1(R) = {1} ,
SO2

∼= S1 ,

On ≈ SOn × Z2 (as topological spaces) ,

SO3 ≈ RP3 (as topological spaces).

For the last of the previous statements, we sketch a proof. Each element

in SO3 is a rotation around some axis. Let B3 ⊂ R3 be the unit ball

and let f : B3 −→ SO3 be the map that sends an element x ∈ B3 to

the rotation around the axis determined by x by an angle π|x|. f is

clearly surjective; that is, it is an identification (see Figure 2.1).

π|x|

O

x

Figure 2.1

From f(x) = f(y) it follows that either x = y or x = −y and |x| =
|y| = 1. That is, f identifies antipodal points of S2 ⊂ B3, and thus f

induces a homeomorphism

RP3 = B3/∼ ≈−−−−−→SO3 ,
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where x ∼ y if either x = y or x = −y and |x| = 1. It is thus enough

to prove that f is continuous, which is left as an exercise to the reader.

3. The following are subgroups of GLn(C):

SLn(C) = {A | det(A) = 1} ,
GLn(R) = {A | A = A} ,
On(C) = {A | AA∗ = 1} ,

Un = {A | AA∗ = 1} ,
On = {A | A = A = (A∗)−1 ,

where A∗ is again the transposed matrix of A ∈ GLn(C) and A is the

complex conjugate matrix.

The group SLn(C) is the special linear group of complex n×n matrices,

and the group Un is the unitary group of n× n matrices.

SUn = Un ∩ SLn(C)

is the special unitary group of n× n matrices.

4. There is an embedding

r : GLn(C) ↪→ GL2n(R) ,

as follows. Each C-linear transformation of Cn is also an R-linear trans-
formation. If we consider Cn as a real vector space, then we obtain a

vector space isomorphic to R2n. This isomorphism can be given by

z = (x1 + iy1, . . . , xn + iyn) 7−→ (x1, . . . , xn, y1, . . . , yn) = (x, y) ,

from which we obtain that if z′ = zC, C ∈ GLn(C), then C = A+ iB,

with A and B real matrices. Hence,

(x′, y′) = (x, y)

(
A B
−B A

)
;

thus we can define

r(C) =

(
A B
−B A

)
.

r is a topological embedding (inclusion), since it is continuous, injective,

and has an inverse given by(
A B
−B A

)
7−→ A+ iB

which is obviously continuous as well.
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2.2.6 Definition. Let H be a subgroup of a topological group G. Let G/H

be the set of left cosets xH, x ∈ G. We topologize G/H by requiring that

the quotient map

p : G −→ G/H

be an identification. We call this topological space the homogeneous space of

the group G modulo H.

2.2.7 Theorem. p is an open map, that is, if A ⊂ G is an open set, then

its image pA is open. (Recall that there are identifications that are not open

maps.)

Proof: That pA is open means, by definition of an identification that p−1pA

is open. But

p−1pA = AH =
∪
x∈H

Ax .

Now, if A is open, then also Ax is open, since the map G −→ G given by

y 7→ yx is a homeomorphism (the proof of this fact is an easy exercise for

the reader). Thus p−1pA is a union of open sets, thus open. ⊓⊔

2.2.8 Theorem. If H is a normal subgroup of G, then G/H is a topological

group.

Proof: By means of the commutativity of the diagrams

G×G µ //

p×p
��

G

p

��
G/H ×G/H

µ
//___ G/H ,

G
ι //

p

��

G

p

��
G/H

ι
//___ G/H ,

one may define maps µ, ι. µ is the canonical multiplication in G/H, and ι

determines canonically the inverses in G/H. Since p is open, so is also p× p,
and this last being surjective makes it an identification too. Therefore, both

µ and ι are continuous. ⊓⊔

2.2.9 Exercise. Prove the previous theorem using the maps ν and ν instead

of the maps µ, ι, µ, and ι.

2.2.10 Theorem. The homogeneous space G/H is Hausdorff if and only if

H is closed in G.
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Proof: If G/H is Hausdorff, then the point p(1) ∈ G/H is closed (1 ∈ G is

the neutral element) and so p−1p(1) = H is closed.

Conversely, let H be closed. Consider the relation

R = {(x, y) | x−1y ∈ H} ⊂ G×G .

R is closed in G×G, since it is the inverse image of H under the continuous

map ν : G×G −→ G given by (x, y) 7→ x−1y. Let x1H and x2H be different

cosets in G/H. Then (x1, x2) ̸∈ R, and since R is closed, there exist open

neighborhoods Uν of xν (ν = 1, 2) such that (U1×U2)∩R = ∅. Since p is an

open map, pUν is a neighborhood of p(xν) = xνH. These neighborhoods pU1

and pU2 are disjoint, since if, on the contrary, there were elements yν ∈ Uν
such that p(y1) = p(y2), then one would have that (y1, y2) ∈ R. But this

contradicts the choice of U1 and U2. ⊓⊔

This theorem shows the importance of taking only closed subgroups of a

given topological group.

2.2.11 Corollary. {1} is closed in G if and only if G is Hausdorff. ⊓⊔

2.2.12 Definition. LetG be a topological group andX a topological space.

We say that G acts on X on the left if there is a continuous map

λ : G×X −→ X

such that, if we denote λ(g, x) by gx, then the following hold:

(a) (g1g2)x = g1(g2x),

(b) 1x = x.

From g−1(gx) = (g−1g)x = 1x = x and g(g−1x) = x it follows that the map

ĝ : X −→ X ,

x 7−→ gx ,

is a homeomorphism of X for each g ∈ G. Condition (a) implies that the

mapping g 7→ ĝ is a homomorphism from G into the group Homeo(X) of

homeomorphisms of X onto itself. If G acts on X we say that X is a left

G-space.
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2.2.13 Note. There is a corresponding notion of a groupG acting on a space

X on the right, if instead of the map λ one has a map ρ : X × G −→ X,

(x, g) 7→ xg, that satisfies conditions corresponding to (a) and (b). In this

case we speak of X as a right G-space.

2.2.14 Exercise. Give a precise formulation for (a) and (b) in the case of a

right action of G on X. Then prove that there is a one-to-one correspondence

between left actions and right actions of G on X given by the formula

xg = g−1x .

2.2.15 Definition. G acts effectively onX if gx = x for all elements x ∈ X,

then g = 1. In this case, we may consider G as a subgroup of Homeo(X),

through the embedding g 7→ ĝ.

2.2.16 Definition. G acts transitively on X if for any x, y ∈ X there exists

an element g ∈ G such that y = gx. In this case, there is a continuous

surjection from G onto X through the mapping g 7→ gx0 for some (any)

fixed x0 ∈ X (see 2.2.20 below.)

2.2.17 Definition. G acts freely on X if gx = x for some element x ∈ X,

then g = 1.

2.2.18 Examples.

1. GLn(R) acts on Rn through (A, x) 7→ Ax, for any invertible n × n

matrix A and any vector x in Rn (written vertically). Conditions (a)

and (b) in Definition 2.2.12 are obviously satisfied. This is an effective

and transitive action.

2. Let H be a subgroup of a topological group G. G acts on the homoge-

neous space G/H as follows. By the commutativity of

G×G
id×p

��

µ // G

p

��
G×G/H

λ
//___ G/H

a map λ is uniquely defined. The action λ is continuous, since by 2.2.7,

the product of maps id×p is an identification. The map λ is then given

by
(g1, g2H) 7−→ (g1g2)H
∥ ∥

(g1, p(g2)) 7−→ p(g1g2) .
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With this, it is routine to verify (a) and (b) in 2.2.12. The action λ is

always transitive, but not necessarily effective. (For instance, if G is

abelian and H ̸= {1}, it is not effective. It is never free.).

2.2.19 Exercise. Prove the following:

(a) If G acts freely on X, then it also acts effectively.

(b) The orthogonal group On acts effectively on Rn, but it does not act

freely.

2.2.20 Remark. Many transitive actions can be reduced to the one of Ex-

ample 2.2.18, 2.

Let x0 ∈ X be a fixed element. As we already noted, by g 7→ gx0 one

defines a map f : G −→ X. This map f is surjective when G acts transitively

on X. Take H = {g ∈ G | gx0 = x0} = f−1(x0). Then H is a subgroup of G.

It is called the isotropy subgroup of x0 and is usually denoted by Gx0 . This

subgroup is closed whenever the point x0 is closed in X. Let us consider the

problem

G
p

}}zz
zz
zz
zz f

!!B
BB

BB
BB

B

G/H
f

//_______ X .

The map f exists. Namely, one has

p(g1) = p(g2) ⇔ g−1
1 g2 ∈ H ⇔ g−1

1 g2x0 = x0

⇔ g2x0 = g1x0 ⇔ f(g1) = f(g2) .

Thus the map f is even bijective. f is continuous, since p is an identification.

Under adequate assumptions, one can prove that f is a homeomorphism. For

example, if the space X is Hausdorff and the quotient space G/H is compact.

The map f is compatible with the actions of G on G/H and on X, in other

words, it is equivariant. That is, the diagram

G×G/H //

id×f
��

G/H

f
��

G×X // X

is commutative.
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2.2.21 Definition. Let G be a topological group. If X is a G-space and

x ∈ X, then the subspace

Gx = {gx | g ∈ G} ⊂ X

is called the orbit of x under the action of G. The orbits decompose the space

X in disjoint subspaces. Namely, assume that gx = hy for some g, h ∈ G,
x, y ∈ X, then for any k ∈ G, kx = kg−1gx = kg−1hy ∈ Gy; hence, Gx ⊂ Gy.

Similarly, one proves under the same assumption that Gy ⊂ Gx. Thus the

orbits of any two points are either equal or disjoint.

We denote by X/G the set of orbits of X under the action of G. Let

q : X −→ X/G denote the mapping x 7→ Gx. We endow X/G with the

quotient topology induced by q. We call this the orbit space of X (with

respect to G).

2.2.22 Exercise. Assume that X is a Hausdorff G-space and that G is

compact. Prove the following:

(a) X/G is Hausdorff.

(b) q : X −→ X/G is a closed map.

(c) q : X −→ X/G is a proper map, namely, for each compact set K ⊂
X/G, the inverse image q−1K ⊂ X is compact.

(d) X is compact if and only if X/G is compact.

(e) X is locally compact if and only if X/G is locally compact.

2.2.23 Example. Let F be any of the fields R, C, or H. Then F−{0} ⊂ F
is a topological group with the relative topology and the multiplication given

by the field multiplication. There is an action of this group on Fn+1 −
{0}, given by λ(x0, x1, . . . , xn) = (λx0, λx1, . . . , λxn) for λ ∈ F − {0} and

(x0, x1, . . . , xn) ∈ Fn+1 − {0}. The orbit space Fn+1 − {0}/F − {0} is the

projective space FPn defined in 1.3.1 (a).

2.2.24 Exercise. Let d be the (real) dimension of F (see 1.3.1 (a)) and

let Sd(n+1)−1 ⊂ Fn+1 − {0} be the unit sphere (see 1.6.6 (e)). Prove that

Sd−1 ⊂ F − {0} is a closed subgroup. Moreover, prove that the restriction

of the action given in 2.2.23 gives an action of Sd−1 on Sd(n+1)−1. Conclude

that there is a canonical homeomorphism

Sd(n+1)−1/Sd−1 ≈ FPn .
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2.2.25 Example. The group On acts on the sphere Sn−1 through (A, x) 7→
Ax (cf. Example 2.2.18, 1). Take x0 ∈ Sn−1 to be the vector such that x∗0 =

(0, . . . , 0, 1). The equation Ax0 = x0 is equivalent to the matrix equation

A =

(
B 0
0 1

)
, B ∈ On−1 .

By means of the embedding given by

B 7−→
(
B 0
0 1

)
we may consider the group On−1 as a subgroup of On and by 2.2.20 we have

a homeomorphism

f : On/On−1 ≈ Sn−1 ,

(since On is compact and Sn−1 is Hausdorff).

2.2.26 Exercise. Similarly to the previous example, give a transitive ac-

tion of the group Un on the sphere S2n−1 ⊂ Cn. Conclude that there is a

homeomorphism

Un/Un−1 ≈ S2n−1 .

2.2.27 Note. See Subsection 2.5.1 for further examples similar to 2.2.25

and 2.2.26.

2.3 Fiber Bundles

In what follows, B and F will be topological spaces, and G a topological

group acting effectively on F (see 2.2.15). F , G and the action will be the

same along this section. We shall prepare the definition of a fiber bundle.1

2.3.1 Definition. A set bundle B with fiber F is a family

F = {Fx | x ∈ B}

of sets, that are equivalent (as sets) to F , that is, Fx ≈ F for all x. A local

chart for F is a family

φ = {φx : F −→ Fx | x ∈ Uφ}
1The definition of a fiber bundle that we shall give below was proposed by A. Dold.
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of maps, where Uφ is an open set in B, and each map φx is bijective. If we

want to emphasize that a set bundle F is a bundle over B, we sometimes

denote it by the pair (F , B).

An atlas for F with respect to the group G is a set A of local charts for

F such that the following conditions are satisfied:

(B1)
∪
φ∈A Uφ = B.

(B2) Given φ, ψ ∈ A and x ∈ Uφ ∩ Uψ, g(x) = ψ−1
x φx : F −→ F is an

element of G ⊂ Homeo(F ) (cf. 2.2.15).

(B3) The map

g : Uφ ∩ Uψ −→ G

x 7−→ g(x)

is continuous.

An atlas is said to be trivial if it consists of only one chart.

2.3.2 Example. Let p : E −→ B be a locally trivial fibration, all of whose

fibers are homeomorphic to F . We obtain a set bundle F = {Fx} by defining

Fx = p−1(x). The fact that p is locally trivial means that there is an open

cover {Uj | j ∈ J} of B and homeomorphisms Φj such that the diagram

Uj × F
Φj //

proj1 ##F
FF

FF
FF

FF
p−1Uj

pUj||yy
yy
yy
yy

Uj

commutes. We give local charts as follows. For each j ∈ J , take

φj = {φj,x : F −→ p−1x = Fx | x ∈ Uj}

by defining φj,x(y) = Φj(x, y). The set A = {φj | j ∈ J} is an atlas. (B1)

clearly holds. In order for (B2) and (B3) to hold, we need a topological group

G with the following properties:

(a) G ⊂ Homeo(F ) (as a subgroup).

(b) The homeomorphisms

gij(x) = φ−1
i,xφj,x : F −→ F

are all elements of G.
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(c) The group G acts on F , i.e., the obvious map G× F −→ F is contin-

uous.

(d) The map gij : Ui ∩ Uj −→ G given by x 7→ gij(x) is continuous.

Endowing Homeo(F ), for instance, with the compact-open topology, and

taking G = Homeo(F ), all conditions (a)–(d) are satisfied. The only remain-

ing question is the following: Is G a topological group with this topology

and does it act continuously on F? The answer is yes if, for example, F is

compact and Hausdorff (cf. Steenrod [15, 5.4]).

Another possibility is to furnish Homeo(F ) with the k-topology associated

to the compact-open one. Thus, if F is also compactly generated, then taking

G = Homeo(F ), G is a topological group that acts on F and (a)–(d) are

satisfied (for (c) see [16, 5.2 and 5.9]).

2.3.3 Definition. Let F and F ′ be set bundles over B and B′, respectively,

both with the same fiber F . A set bundle map (f, f) : F −→ F ′ consists of

a continuous map f : B −→ B′, and a family f = {fx | x ∈ B} of bijections
fx : Fx −→ Ff(x).

Let A and A′ be atlases for F and F ′ with respect to the group G (G

acts on F always in a fixed manner). (f, f) is said to be compatible with A
and A′ if the following conditions hold:

(C1) If φ ∈ A, ψ ∈ A′, and x ∈ Uφ ∩ f
−1
U ′
ψ, then the bijection

ψ−1
y fxφx : F −→ F ,

where y = f(x), is an element g(x) ∈ G; in particular, it is a homeo-

morphism.

(C2) The map g : Uφ ∩ f
−1
U ′
ψ −→ G given by x 7→ g(x) is continuous.

The next theorem shows that set bundles build a category.

2.3.4 Theorem.

(a) (e, idB), where ex = idFx, is a set bundle map (F , B) −→ (F , B) com-

patible with the atlases A and A. We denote (e, idB) by id(F ,B) or

simply by idF .
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(b) If (f, f) : (F , B) −→ (F ′, B′) is compatible with A and A′, and (f ′, f
′
) :

(F ′, B′) −→ (F ′′, B′′) is compatible with A′ and A′′, then (h, h) :

(F , B) −→ (F ′′, B′′) is compatible with A and A′′, where h = f
′◦f and

h = {hx = f ′
f(x)
◦fx : Fx −→ F ′′

h(x)
}. We denote (h, h) by (f ′, f

′
)◦(f, f).

Proof: (a) is clear.

For (b), take φ ∈ A, χ ∈ A′′, and x ∈ Uφ ∩ h
−1
Uχ. We choose ψ ∈ A′

such that y = f(x) ∈ Uψ. Then, for z = f
′
(y),

g′′(x) = χ−1
z ◦ hx ◦ φx = χ−1

z ◦ f ′
y ◦ fx ◦ φx

= (χ−1
z ◦ f ′

y ◦ ψy) ◦ (ψ−1
y ◦ fx ◦ φx)

= g′(y)g(x) ∈ G ,

since by assumption both g′(y) and g(x) lie in G. It still remains to prove

that the mapping x 7→ g′′(x) is a continuous map g′′ : Uφ ∩ h
−1
U ′′
χ −→ G.

This is true because

{Uφ ∩ f
−1
U ′
ψ ∩ h

−1
U ′′
χ | ψ ∈ A′}

is an open cover of Uφ ∩ h
−1
U ′′
χ , and g

′′ is continuous on each open set of the

cover, since there

g′′(x) = µ(g′(y), g(x))

= µ ◦ (g′ × g) ◦ (f × id) ◦∆(x) ,

where ∆ : X −→ X × X is the diagonal map and µ : G × G −→ G is the

multiplication in G. ⊓⊔

2.3.5 Theorem. Let F be a set bundle over B with two given atlases A and

A′. Then the set bundle map idF = (e, idB) is compatible with with A and

A′ if and only if A ∪A′ is an atlas.

Proof: This follows immediately from Definition 2.3.3. ⊓⊔

2.3.6 Definition. Two atlases A and A′ of a set bundle are equivalent if

A ∪A′ is again an atlas. This is an equivalence relation.

2.3.7 Theorem. Let A be an atlas for a set bundle F . The following state-

ments hold:

(a) The union Â of all atlases equivalent to A is again an atlas.
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(b) The atlas Â is the largest that is equivalent to A.

(c) The atlas Â is maximal in the ordered set (with respect to inclusion) of

all atlases for F .

Proof: (a) (B1) is clear. Take φ, ψ ∈ Â. There exists atlases A1 and A2 that

are equivalent to A such that φ ∈ A1 and ψ ∈ A2. A1 and A2 are equivalent,

and therefore, (B2) and (B3) hold for φ and ψ.

(b) Â is equivalent to A, since Â ∪ A = Â is again an atlas (because

A ⊂ Â, 2.3.5).

(c) If Â ⊂ B one would have that A ⊂ B and so B would be equivalent

to A, and therefore, B ⊂ Â (by definition of Â). Thus, Â = B. ⊓⊔

2.3.8 Definition. A set bundle F over B with fiber F , together with an

action of G on F and a maximal atlas A with respect to the group G, is

called fiber bundle. The group G is called the structure group of the fiber

bundle.

Such a fiber bundle will be denoted by

ξ = (F,G,B;F ,A) .

A fiber bundle will be called trivial if its atlas is equivalent to the trivial one

(see 2.3.1).

2.3.9 Remark. We could have defined a fiber bundle as a set bundle to-

gether with an equivalence class of atlases, since by 2.3.7, maximal atlases

and equivalence classes of atlases are in one-to-one correspondence; that is

each equivalence class contains exactly one maximal atlas (namely, the union

of all atlases in the class).

As it is frequent, we shall write instead of the equivalence class of an atlas

for ξ simply A, even though this atlas is not maximal. The concept of fiber

bundle is introduced, since an atlas for a set bundle is nothing else but an

auxiliary concept, which does not have to belong to the structure. This will

be clearer when we determine a locally trivial fibration for this fiber bundle.

A special atlas will describe then the local trivialization, while the fibration

will only depend on the equivalence class of the atlases (cf. also 2.3.2).

2.3.10 Theorem. Let (f, f) : (F , B) −→ (F ′, B′) be a set bundle map. Let

A1 and A2 be equivalent atlases for F , and A′
1 and A′

2 equivalent atlases for

F ′. Then (f, f) is compatible with A1 and A′
1 if and only if it is compatible

with A2 and A′
2.
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Proof: Consider the following diagram of set bundle maps.

(F ,A1)
(f,f) //___

(e,idB)
��

(F ′,A′
1)

(F ,A2)
(f,f)

// (F ′,A′
2) .

(e′,idB′ )

OO

By assumption, (e, idB) and (e′, idB′) are compatible with the atlases (see

2.3.5). If the bundle map (f, f) on the bottom is compatible with the atlases,

then by 2.3.4 so is also the bundle map on the top. ⊓⊔

2.3.11 Definition. A (fiber) bundle map ξ −→ ξ′, where

ξ = (F,G,B;F ,A) and ξ′ = (F,G,B′;F ′,A′) ,

is a set bundle map (f, f) : F −→ F ′ that is compatible with the associated

maximal atlases A and A′.

A bundle map will be denoted again by (f, f). By Theorem 2.3.10, a

set bundle map that is compatible with some atlas is compatible with the

corresponding maximal atlas. This is consequent with our convention (see

2.3.9) to allow in the notation for ξ also atlases that are not maximal.

2.3.12 Note. By 2.3.4 one has that fiber bundles, together with bundle

maps constitute a category. As usual, a bundle equivalence is a bundle map

with an inverse.

This is a good oportunity to get to know the different equivalence con-

cepts. “Set bundles with an atlas” and “bundle maps compatible with an

atlas” constitute a category. In this category, (e, id) is an equivalence. It

provides us with atlas equivalence; this will be important in 2.3.14 below,

(see also 2.3.21).

A bundle map (f, idB) is called an equivalence over B (cf. 2.3.13 below). If

we consider (f, idB) as a map of bundles with atlas, we obtain an equivalence

relation, which is stronger than the one given by (e, idB). It is now permitted,

for example, to replace the bundle fibers with equivalent (homeomorphic)

fibers without leaving the equivalence class. This equivalence concept is

important for the bundle classification (see Section 2.8; see also 2.4.5). An

equivalence (f, f) of general type is independent of the specific type of the

space B, i.e., we may replace B with homeomorphic spaces.

2.3.13 Theorem. If (f, f) : ξ −→ ξ′ is a bundle map and f : B −→ B′ is a

homeomorphism, then (f, f) is an bundle equivalence.
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Proof: We have to define a bundle map (f ′, f
′
) that is an inverse of (f, f).

We do it as follows. Take f
′
= f

−1
and f ′ = {f ′

y | y ∈ B′} such that f ′
y = f−1

x

if f(x) = y. Then (f ′, f
′
) is compatible with the atlas (cf. 2.3.3). Namely, to

prove (C1), take φ ∈ A, ψ ∈ A′, and y ∈ Uψ ∩ f
−1
Uφ. Then

g′(y) = φ−1
x f ′

yψy = (ψ−1
y fxφx)

−1 = g(x)−1 ,

since f
′
(y) = x ∈ Uφ ∩ f

′
Uψ = Uφ ∩ f

−1
Uψ.

To prove (C2), we have that the mapping y 7→ g′(y) = g(f
′
(y))−1 is

continuous, since f
′
, g, and the map ι (which sends a group element to its

inverse) are continuous. ⊓⊔

2.3.14 Construction. Let F be a set bundle over B with fiber F . We

shall assign to F a locally trivial fibration over B. To do this, let us assume

that Fx ∩Fy = ∅ if x, y ∈ B are different points. If this assumption does not

hold in F a priori, we replace the sets Fx with {x} × Fx.

Let A = {φj | j ∈ J} be an atlas for F with respect to the group G,

where φj = {φj,x : F −→ Fx | x ∈ Uj}, where we write Uj instead of φj.

We define p : E −→ B as follows. Take

E =
∪
x∈B

Fx and p(Fx) = {x} .

We now endowE with a topology. Using the map Φj given by (x, y) 7→ φj,x(y)

we have the next commutative diagram.

(2.3.15)

Uj × F
Φj //

proj1 ##G
GG

GG
GG

GG
p−1Uj =

∪
x∈Uj Fx

pUjuullll
lll

lll
lll

ll

Uj .

By requiring that Φ is an identification in the diagram∪
j Uj × F × {j}

Φ
��

proj1

''NN
NNN

NNN
NNN

N

E p
// B ,

where Φ(x, y, j) = Φj(x, y), we endow E with a topology and with it p turns

out to be continuous.

We call p : E −→ B the fibration determined by the set bundle F .
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2.3.16 Lemma. Take Xi = Ui×F×{i} and Ei = p−1Ui. Then the restricted

map Φi = Φ|Xi is a homeomorphism Xi −→ Ei.

Proof: The map

Gij : Φ
−1
j (Ei ∩ Ej)

Φj−→ Ei ∩ Ej
Φ−1
i−→ Φ−1

i (Ei ∩ Ej)
(x, y, j) � // (x, φ−1

i,xφj,x(y), i)

is continuous, since φ−1
i,x ◦ φj,x ∈ G and G acts continuously on F . The map

Gji is inverse to Gij, and therefore, Gij is a homeomorphism. Let A be open

in Xi. We have to prove that ΦiA is open in Ei, that is, by the very definition

of an identification, that Φ−1ΦiA is open in
∪
j∈J Xj. This is equivalent to

saying that

Xi ∩ Φ−1ΦiA = Φ−1
j Φi(A ∩ Φ−1

i (Ei ∩ Ej))
= Gij(A ∩ Φ−1

i (Ei ∩ Ej))

is open in Xj. But this is open in Φ−1
j (Ei∩Ej), since Gji is a homeomorphism

and Φ−1
j (Ei∩Ej) = (Ui∩Uj)×F×{j} is open inXj, we have thatXi∩Φ−1ΦiA

is open in Xi. ⊓⊔

From Diagram (2.3.15) and the previous lemma, we obtain the following

two consequences.

2.3.17 Proposition. p is locally trivial. ⊓⊔

2.3.18 Proposition. The identification Φ is an open map. ⊓⊔

In what follows, we see that not only a fiber bundle gives rise to a locally

trivial fibration, but also that a bundle map induces a fiber map.

2.3.19 Construction. Let F and F ′ be set bundles with atlases A and

A′. Let (f, f) : F −→ F ′ be a bundle map that is compatible with the

atlases. We now want to construct a fiber map (f̂ , f) between the locally

trivial fibrations determined by the given set bundles (2.3.14), namely,

E
f̂ //___

p

��

E ′

p′

��
B

f

// B′ ,

Taking f̂(z) = fx(z) if z ∈ Fx, the diagram is commutative.
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2.3.20 Theorem. The map f̂ is continuous, and thus (f̂ , f) is a fiber map.

Proof: The topologies in E and E ′ are given through identifications Φ and

Ψ. One has ∪
φ∈A Uφ × F × {φ}

Φ
��

∪
ψ∈A′ U ′

ψ × F × {ψ}

Ψ
��

E
f̂

// E .

It is then enough to prove that f̂ ◦ Φ is continuous. For that, since the sets

(Uφ ∩ f
−1
Uψ) × F × {φ} build an open cover of

∪
Uφ × F × {φ}, we only

check that f̂ ◦Φ|
(Uφ∩f

−1
Uψ)×F×{φ} is continuous for all φ ∈ A and all ψ ∈ A′.

One has

f̂Φ(x, v, φ) = f̂φx(v) = fxφx(v)

= ψy(ψ
−1
y fxφx)(v)

= ψyg(x)(v)

= Ψ(y, g(x)v, ψ) ,

where y = f(x). The last term clearly depends continuously on (x, v), thus

we obtain the desired continuity. ⊓⊔

Let F be a set bundle over B with two atlases A and A′. The set map

p : E −→ B (as in 2.3.14) depends only on F . However, there are two

topologies T and T ′ in E.

2.3.21 Theorem. If A and A′ are equivalent atlases, then the topologies T
and T ′, generated by A and A′ on E are the same.

Proof: By 2.3.5, the bundle map (e, idB) : F −→ F is compatible with the

atlases. By 2.3.19, we have that the identity map

idE = ê : (E, T ) −→ (E, T ′)

is continuous. Similarly, one may prove that the inverse map is also contin-

uous. ⊓⊔

By Theorem 2.3.21 we may assign to each fiber bundle ξ (see Definition

2.3.8) a fibration pξ : E −→ B and to each bundle map (f, f) a fiber map

(f̂ , f). We call them the fibration determined by the fiber bundle ξ and

the fiber map determined by the bundle map (f, f). This assignment is

compatible with the composition of maps, as can easily be verified; thus we

have the following.
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2.3.22 Theorem. The assignments

ξ 7−→ (pξ : E −→ B)

(f, f) 7−→ ((f̂ , f) : pξ −→ pξ′)

define a functor from the category of fiber bundles and bundle maps to the

category of locally trivial fibrations and fiber maps. To a trivial bundle, a

trivial fibration is assigned. ⊓⊔

2.3.1 Tangent Bundles

As an application of the previous concepts, we shall construct the bundle of

tangent vectors of a differentiable manifold.

2.3.23 Definition. A one-one relation f is a triple of sets f = (X, Y, F )

such that F ⊂ X × Y and such that for each x ∈ X there exists at most one

y ∈ Y with (x, y) ∈ F .

The set

Def(f) = {x ∈ X | ∃y ∈ Y with (x, y) ∈ F}
is called the definition domain of the relation. We write this relation as

f : X −→ Y . If x ∈ Def(f) and (x, y) ∈ F , then we write y = f(x).

Let M and N be differentiable manifolds. A one-one relation f : M −→
N is differentiable if

(1) Def(f) ⊂M is an open set.

(2) f |Def(f) is a differentiable map.

The composition of two differentiable one-one relations is again a differen-

tiable one-one relation.

Let M be an n-dimensional smooth (i.e., of class C∞) manifold. Take

x ∈M and let ϑx be the set of differentiable one-one relations

f :M −→ R with x ∈ Def(f) .

ϑx is a vector space; namely, if f, g ∈ ϑx, then f + g ∈ ϑx is given by

Def(f + g) = Def(f)∩Def(g), and for all x′ ∈ Def(f)∩Def(g), (f + g)(x′) =
f(x′) + g(x′) ∈ R. Moreover, if α ∈ R and f ∈ ϑx, then αf ∈ ϑx is given

by Def(αf) = Def(f), and for all x′ ∈ Def(f), (αf)(x′) = α(f(x′)) ∈ R. In

fact, ϑx has also a multiplication that makes it an algebra over R. Namely,

if f, g ∈ ϑx, then f · g ∈ ϑx is given by Def(f · g) = Def(f) ∩Def(g), and for

all x′ ∈ Def(f) ∩Def(g), (f · g)(x′) = f(x′)g(x′) ∈ R.
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2.3.24 Definition. A tangent vector of M at x is a map

X : ϑx −→ R

with the following properties:

(1) If f, g ∈ ϑx and f(x) = g(x) for all y in some neighborhood of x, then

Xf = Xg .

This means that Xf depends only on the germ of f around x.

(2) X(αf + βg) = α(Xf) + β(Xg) for α, β ∈ R. This means that X is

linear.

(3) X(f · g) = (Xf)g(x) + f(x)(Xg). This means that X is a derivation.

See [11, 2.2].

Let Tx(M) be the set of all tangent vectors of M at x. By means of the

usual function addition and multiplication by a scalar, Tx(M) gets a vector

space structure. This is the tangent space of M at x.

2.3.25 Construction. Let h :M −→ N be differentiable one-one relation,

and take x ∈ Def(h). Defining

[dhxX]f = X(f ◦ h) , f ∈ ϑh(x)(N) ,

one has a linear transformation

dhx : Tx(M) −→ Th(x)(N) .

The linear transformation dhx is called the derivative of h at x. For a com-

posite M
h−→ N

g−→ P one has

d(g ◦ h)x = dgh(x) ◦ dhx .

This equation is the chain rule for the derivative of a composite. For the

identity map id :M −→M in a neighborhood of x in M , one has

d(id)x = idTx(M) .

This, together with the chain rule, lets one obtain that if h is a local diffeo-

morphism around x, that is if h and h−1 are differentiable one-one relations,

then

(dh−1)h(x) = (dhx)
−1 .

In particular, dhx is a linear isomorphism.
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2.3.26 Exercise. Consider the category of pointed differentiable manifolds

(M,x) with maps h : (M,x) −→ (N, y) given by one-one relations h such

that x ∈ Def(h) and y = h(x). Verify that this is, indeed, a category and

prove that the assignments

(M,x) −→ Tx(M) ,

h 7−→ dhx ,

determine a functor from the just defined category to the category of finite

dimensional vector spaces and linear transformations.

Take M = Rn and x ∈ Rn. Let Dj(x) be the tangent vector at x given

by

Dj(x)f =
∂f

∂xj
|x ,

j = 1, 2, . . . , n.

2.3.27 Lemma. The vectors D1(x), . . . , Dn(x) build a basis of the tangent

space Tx(Rn).

For the proof see [11, 2.3]. ⊓⊔

Via the mapping (α1, . . . , αn) 7→
∑
αjDj(x) one obtains an isomorphism

Rn −→ Tx(Rn) through which we identify both spaces.

2.3.28 Definition. Let M be a differentiable n-manifold and h : Rn −→
M a differentiable one-one relation. If h−1 is also a differentiable one-one

relation, then they determine a diffeomorphism Im(h) ≈ Def(h), where Im(h)

is the image of the one-one relation h, that will be called local chart. For

x ∈ Im(h) and y = h−1(x) one has an isomorphism

dhy : Ty(Rn) = Rn −→ Tx(M)

(which, in particular, is bijective).

Let M be a differentiable n-manifold. We have a set bundle over M with

fiber Rn (2.3.28) given by

T (M) = T = {Tx(M) | x ∈M} .
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If h is a local chart for the manifold M , one can give a local chart φ =

{φx(M) | x ∈ Im(h)} for T by

φx = dhy : Rn −→ Tx(M) , y = h−1(x) .

If we start with an atlas of local charts for M , we obtain an atlas indexed

by {φ} for T with respect to the group GLn(R). Namely, take another local

chart h̃ : Rn −→ M and φ̃x = (dh̃)ỹ, ỹ = h̃−1(x). For x ∈ Im(h) ∩ Im(h̃)

(cf. 2.3.25) one has

φ−1
x ◦ φ̃x = (dhy)

−1 ◦ dh̃ỹ = d(h−1 ◦ h̃)ỹ .

Thus g(x) = d(h−1 ◦ h̃)ỹ, since it is a linear transformation, is an element of

GLn(R), because h−1 ◦ h̃ has a differentiable inverse.

We still have to prove that x 7→ g(x) is a continuous map on Im(h)∩Im(h̃).

This follows from the next result.

2.3.29 Lemma. If k : Rn −→ Rn and its inverse k−1 : Rn −→ Rn are

differentiable one-one relations, then the map

Def(k) −→ GLn(R)
x 7−→ dkx

is continuous.

Proof: Applying the basis and the identification of 2.3.27 one gets dkx ex-

pressed by the jacobian of k in x. Thus the map is continuous. ⊓⊔

2.4 Coordinate Transformations

In this section we explain how a fiber bundle is assembled.

2.4.1 Definition. Let ξ = (F,G,B;F ,A) be a fiber bundle with (a not

necessarily maximal) atlas A = {φj | j ∈ J}. We shall again briefly write Ui
instead of Uφi and gij(x) instead of φ−1

i,x ◦φj,x for x ∈ Ui∩Uj. The so-defined
maps gij : Ui∩Uj −→ G will be called coordinate transformations of ξ. They

are interrelated by means of the following equations:

(CT1) gij(x)gjk(x) = gik, x ∈ Ui ∩ Uj ∩ Uk, i, j, k ∈ J .
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2.4.2 Definition. Let G be a topological group, B a topological space,

and U = {Uj | j ∈ J} an open cover of B. A cocycle (of dimension one)

for U with coefficients in G 2 is a family {gij : Ui ∩ Uj −→ G | i, j ∈ J} of
continuous maps that satisfy (CT1). From (CT1) one obtains the following

two consequences:

1. gii(x) = 1 ∈ G, x ∈ Ui, i ∈ J .

2. gji(x) = gij(x)
−1, x ∈ Ui ∩ Uj, i, j ∈ J .

To obtain them, it is enough to set i = j = k in (CT1) for 1, and then i = k

in 1 to get 2.

The maps gij of a fiber bundle as given above, describe how the trivial

portions of the determined fibration have to be “assembled”; they are, so to

say, “assembly instructions”. We have the following.

2.4.3 Theorem. Let {gij} be a cocycle for U with coefficients in G. Then,

for every topological space F on which G acts effectively, there is a set bundle

over B with fiber F and an atlas for the group G, whose coordinate transfor-

mations (as in 2.4.1) are the maps gij of the cocycle.

Proof: For x ∈ B we choose an index kx ∈ J such that x ∈ Ukx . We define a

set bundle F and a set A of local charts by

F = {Fx | x ∈ B} , Fx = F ,

A = {φj | j ∈ J} , φj = {φj,x | x ∈ Uj} ,
φj,x = gkxj(x) : F −→ F = Fx , x ∈ Uj .

By definition, φj,x is an element of the group G, and so it is a bijective map

F −→ F ; it is therefore a local chart.

A is an atlas; namely,

φ−1
i,x ◦ φj,x = gkxi(x)

−1gkxj(x)

= gikx(x) gkxj(x)

= gij(x) ∈ G .

Conditions 2.3.1, (B1)–(B3) for an atlas are satisfied thanks to Definition

2.4.2, and so one sees immediately that these are the desired coordinate

transformations. ⊓⊔
2To be more precise, one should have to say, “a cocycle with coefficients in the sheaf

of germs of continuous maps B −→ G”, (cf. Hirzebruch [4, 2.6]). However, no confusion
should arise by our short form of stating it.
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2.4.4 Definition. Two cocycles g = {gij} and g̃ = {g̃ij} for the cover

U = {Uj | j ∈ J} are said to be cohomologous in U if there is a family of

continuous maps {λj : Uj −→ G} that satisfies the equations

(CT2) g̃ij(x)λj(x) = λi(x)gij(x), x ∈ Ui ∩ Uj i, j ∈ J .

2.4.5 Theorem. Let ξ, ξ̃ be fiber bundles over B, with fiber F and structure

group G. Let A and Ã be the corresponding atlases with the same cover U and

coordinate transformations {gij}, {g̃ij}. ξ and ξ̃ are equivalent over B (see

2.3.12) if and only if the cocycles g = {gij} and g̃ = {g̃ij} are cohomologous

in U .

In particular, a fiber bundle is characterized, up to equivalence over B,

by its coordinate transformations.

Proof: Let (f, idB) : ξ −→ ξ̃ be an equivalence. By means of the mapping

x 7→ λ̃j(x) = φ̃−1
j,x ◦ fx ◦ φj,x a continuous map λj : Uj −→ G is determined

(by 2.3.3). One has

g̃ij(x)λj(x) = (φ̃−1
i,x ◦ φ̃j,x) ◦ (φ̃j,x ◦ fx ◦ φi,x)

= φ̃−1
i,x ◦ fx ◦ (φi,x ◦ φ−1

i,x) ◦ φj,x
= (φ̃−1

i,x ◦ fx ◦ φi,x) ◦ (φ−1
i,x ◦ φj,x)

= λi(x)gij(x) .

Thus the cocycles g = {gij} and g̃ = {g̃ij} are cohomologous in U .

Conversely, let g = {gij} and g̃ = {g̃ij} be cohomologous in U . The map

fx = φ̃j,x ◦ λj(x) ◦ φ−1
j,x : Fx −→ F̃x

is independent of j; namely, the right hand side is equal to

φ̃j,x ◦ λj(x) ◦ gji(x) ◦ φ−1
i,x = φ̃j,x ◦ g̃ji(x) ◦ λi(x) ◦ φ−1

i,x

= φ̃i,x ◦ λi(x) ◦ φ−1
i,x , x ∈ Ui ∩ Uj .

The pair ({fx}, idB) is a bundle map, since conditions 2.3.3 (C1) and (C2)

are obtained from

φ̃i,x ◦ fx ◦ φj,x = g̃ij(x) ◦ φ̃−1
j,x ◦ φ̃j,x ◦ λj(x) ◦ φ−1

j,x ◦ φj,x
= g̃ij(x)λj(x) ∈ G .

⊓⊔
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Not every fiber bundle has an atlas for a given cover. For this reason, we

wish to compare different covers.

Let U = {Uj | j ∈ J} and mathcalV = {Vk | k ∈ K} be open covers of B.

Let mathcalV be a refinement of U , i.e., there exists a function α : K −→ J

with Vk ⊂ Uα(k) for every k ∈ K. Let g = {gij | i, j ∈ J} be a cocycle for U
with coefficients in G. By

hkl = gα(k)α(l)|Vk∩Vl , k, l ∈ K ,

we define a new cocycle α#(g) = {hkl | k, l ∈ K} for mathcalV with coeffi-

cients in G. This is the cocycle induced by the refinement.

2.4.6 Definition. Let g and g̃ be cocycles for the covers U = {Uj | j ∈ J}
and Ũ = {Ũi | i ∈ J̃} with coefficients in G. We say that g and g̃ are

cohomologous in B if there exists a common refinement mathcalV = {Vk |
k ∈ K} of U and Ũ and “refining functions” α : K −→ J and α̃ : K −→ J̃

such that α#(g) and α̃#(g̃) are cohomologous in mathcalV .

“Cohomology in B” is an equivalence relation. Reflexivity and symmetry

are clear. Transitivity will be proved inside the proof of Theorem 2.4.7,

although it is an easy exercise to prove it directly.

We denote by [g] the corresponding equivalence class and call it cohomol-

ogy class of g.

Let H1(B;G) be the set of cohomology classes of cocycles for covers of B

with coefficients in G. Let kG(F,B) be the set of equivalence classes (over

B) of fiber bundles over B with fiber F and structure group G.

2.4.7 Theorem. If to each fiber bundle, the cohomology class of the cocycle

consisting of its coordinate transformations is assigned, there is a bijection

γ : kG(F,B) −→ H1(B;G) ,

induced by mapping each fiber bundle ξ to the cohomology class of the cocycle

determined by its coordinate transformations.

For the proof, we need some previous considerations.

Let F be a set bundle over B with atlas A = {φj | j ∈ J} for the cover

U = {Uj | j ∈ J}. Let mathcalV ={Vk | k ∈ A} be an open refinement of U
and α : K −→ J the refining function, (i.e. Vk ⊂ Uα(k)).
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Define

ψk = {φα(k),x | x ∈ Vk}
α#A = {ψk | k ∈ K} .

2.4.8 Lemma. The following statements hold:

(a) α#A is an atlas equivalent to A.

(b) If the cocycle g consists of the coordinate transformations of A, then
α#g consists of those of α#A.

Since the proof is simple, we leave it to the reader. ⊓⊔

Proof of 2.4.7:

γ is well defined:

Let F and F̃ be set bundles over B with fiber F . Let A and Ã be atlases

for F and F̃ with respect to the group G and with covers U = {Uj | j ∈ J}
and Ũ = {Ũi | i ∈ J̃}. Then

mathcalV = {Uj ∩ Ũi | (j, i) ∈ J × J̃}

is an open refinement of U and Ũ . As refining functions we have the projec-

tions

J̃ , α̃(j, i) = i

J × J̃
α̃ 55kkkkkkk

α ))SSS
SSSS

J , α(j, i) := j .

Let now g and g̃ be the cocycles consisting of the coordinate transformations

of A and Ã, respectively.

One has that, since (F ,A) and (F̃ , Ã) are equivalent over B, by 2.4.8

(a), (F , α#A) and (F̃ , α̃#Ã) are also equivalent over B. By 2.4.8 (b) and

2.4.5, α#g is cohomologous to α̃#g̃ in mathcalV ; and by Definition 2.4.6, g

is cohomologous to g̃ en B.

γ is injective:

Let F , A, U , g and F̃ , Ã, Ũ , g̃ be as in the first part of the proof.

Let g and g̃ be cohomologous in B. By definition, there exists an common

open refinement mathcalV= {Vk | k ∈ K} of U and Ũ with refining maps

α : K −→ J and α̃ : K −→ J̃ such that α#g and α̃#g̃ are cohomologous in

mathcalV . Consequently, (F , α#A) and (F̃ , α̃#Ã) are equivalent over B (see
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2.4.8 (b) and 2.4.5) and so, by 2.4.8 (a), (F ,A) and (F̃ , Ã) are equivalent

over B too.

γ is surjective:

This is exactly the statement of Theorem 2.4.3. ⊓⊔

Since the “cohomology set” H1(B;G) is independent of the fiber F , we

may use 2.4.7 to establish a relationship among bundles with different fibers,

but the same structure group.

2.4.9 Definition. Two fiber bundles

ξ = (F,G,B;F ,A) , ξ̃ = (F̃ , G,B; F̃ , Ã)

are called associated if the cocycles consisting of their coordinate transfor-

mations are cohomologous in B; that is, if the images of their equivalence

classes under

γ : kG(F,B) −→ H1(B;G) and γ̃ : kG(F̃ , B) −→ H1(B;G)

coincide.

2.4.10 Definition. Let θ : G −→ H be a continuous homomorphism of

topological groups. If {gij} is a G-cocycle, then {θ ◦ gij} is an H-cocycle,

as one deduces from (CT1). The assignment {gij} 7→ {θ ◦ gij} is compatible

with the cohomology relation and determines a function

θ∗ : H
1(B;G) −→ H1(B;H) .

A geometric interpretation of θ∗ is the following. Let θ : G ↪→ H be the

inclusion of a subgroup. If H acts effectively on F and G acts by restricting

the action of H, then one may clearly consider a bundle ξ = (F,G,B;F ,A)
as a bundle with structure group H. However, in this case, θ∗ does not have

to be injective. By passing to the larger group H two nonequivalent bundles

may become equivalent, as we show below in the case of the twisted torus

(cf. 2.4.11, 3).

2.4.11 Examples.

1. Using the method shown in 2.3.2 and the local trivializations of 1.2.9(a)

one may assign to the Moebius strip a set bundle and two local charts.
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These local charts constitute an atlas, if we consider G = Z2 as the

structure group seen as the group whose elements are 1 = idI and the

reflection t 7→ 1 − t in I, endowed with the discrete topology. G then

acts continuously and effectively on I.

2. We may similarly consider the Klein bottle. The structure group G =

Z2 consists here of 1 = idS1 and the reflection on a diameter of S1.

Both the Moebius strip and the Klein bottles are associated.

3. The twisted torus is a set bundle over the circle S1 with fiber F = S1 =

Fx, x ∈ S1, S1 = I/{0, 1}. Let U0 = S1−{0}, U1 = S1−{b}, 0 < b < 1,

two open sets in the circle with the local charts φ0 and φ1 given by

φ0,x : S1 −→ Fx
s 7−→ s

φ1,x : S1 −→ Fx
s 7−→ s , for b < x ≤ 1

s 7−→ gs , for 0 < x < b

where g : S1 −→ S1 is a rotation by π.
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Figure 2.2

The only nontrivial coordinate transformation is

g0 1(x) = φ−1
0,x ◦ φ1,x =

{
idS1 if b < x < 1,

g if 0 < x < b.

The group G = {id, g} ∼= Z2 is again the structure group. The twisted

torus is associated to the Klein bottle and therefore, it is nontrivial,

since one of two associated bundles is trivial if and only if the other is

also trivial.

If we take φ1,x to be also the identity, then instead of the twisted torus

we obtain the trivial bundle. Defining

fx : Fx −→ Fx
s 7−→ dxs ,
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where dx is the rotation in S1 by the angle πx, we obtain a map from

the trivial bundle into the twisted torus that is compatible with the

altases if we use as structure group not only G = {id, g}, but the whole
rotation group SO2. By passing to the larger group SO2, the twisted

torus turns out to be equivalent to the trivial one. On the contrary,

neither the Moebius strip, nor the Klein bottle can be trivialized by

passing to a larger group, since their associated fibrations are nontrivial.

(cf. 1.2.9).

2.4.1 Vector Bundles

A specially important role in algebraic topology, algebraic geometry, and

differential geometry is played by the vector bundles, which constitute a

special class with an interest of its own. See [1] for a more detailed exposition

on them.

2.4.12 Definition. A real (resp. complex) vector bundle of dimension n is

a fiber bundle ξ = (Rn,GLn(R), B;F ,A), (resp. ξ = (Cn,GLn(C), B;F ,A)).
By requiring that φx : Rn −→ Fx be an isomorphism for every φ ∈ A, we
may furnish Fx with a vector space structure, independently of the local

chart φ with x ∈ Uφ.

The usual operations of vector spaces can be extended to vector bundles.

Let V be a vector space and V ∗ be its dual. An isomorphism f : V −→ W

induces a dual isomorphism f t : W ∗ −→ V ∗ and this in turn induces

f ∗ = (f t)−1 : V ∗ −→ W ∗ .

2.4.13 Definition. Given a vector bundle

ξ = (Rn,GLn(R), B;F ,A) ,

its dual vector bundle is defined by

ξ∗ = (Rn = (Rn)∗,GLn(R), B;F∗,A∗) ,

where

F∗ = {(Fx)∗ | x ∈ B} , φ∗ = {(φx)∗ : (Rn)∗ −→ (Fx)∗}

for φ ∈A. One has for φ, ψ ∈ A

(ψ∗
x)

−1 ◦ φ∗
x = (ψ−1

x ◦ φx)∗
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and (ψ−1
x ◦ φx)∗ is an automorphism of (Rn)∗ = Rn and hence it lies in

GLn(R). If we represent ψ−1
x ◦φx (with respect to the canonical basis of Rn)

by the matrix Ax, then (ψ∗
x)

−1 ◦φ∗
x is represented by (Atx)

−1, thus depending

continuously on x.

2.4.14 Definition. Let

ξ1 = (Rn,GLn(R), B;F1,A1) and ξ2 = (Rm,GLm(R), B;F2,A2)

be vector bundles. Their Whitney sum is the vector bundle

ξ1 ⊕ ξ2 = (Rn+m,GLn+m(R), B;F ,A) ,

with

Fx = F1x ⊕F2x and φj,x = φ1 j,x ⊕ φ2 j,x : Rn+m = Rn ⊕ Rm −→ Fx .

φ1,j and φ2,j run independently along the atlases A1 and A2,

gij(x) = φ−1
i,xφj,x = g1 ij(x)⊕ g2 ij(x) : Rn+m −→ Rn+m

is an element of GLn+m(R).

2.4.15 Definition. Given two vector bundles

ξ1 = (Rn,GLn(R), B;F1,A1) and ξ2 = (Rm,GLm(R), B;F2,A2) ,

we define their tensor product as the vector bundle

ξ1 ⊗ ξ2 = (Rnm,GLnm(R), B;F ,A)

with

Fx = F1x ⊗F2x and φj,x = φ1 j,x ⊗ φ2 j,x : Rnm = Rn ⊗ Rm −→ Fx .

Different isomorphisms Rnm ∼= Rn ⊗ Rm give origin to different equivalent

vector bundles.

For other possible constructions see [1].
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2.5 Principal Bundles

The previous considerations on coordinate transformations show that for

the classification of fiber bundles over B with structure group G it is not

necessary to know the fiber F (on which G acts effectively, (cf. 2.4.7, 2.4.8

(a), 2.4.9). Thus one may choose a convenient fiber, and the same structure

group, namely G, is a good candidate. In this case (as we shall see) it is

possible to endow the fibrations and their corresponding fiber bundles with

an additional structure, (namely, an action of G on the total space).

If G is a topological group and F = G, we assume in this section that G

acts by left translation on F .

2.5.1 Definition. Let G be a topological group. A principal G-bundle (or

simply, a principal bundle) is a fiber bundle of the form

ξ = (G,G,B;G,A) ;

that is, a fiber bundle whose fiber coincides with its structure group with the

effective action given by left translation.

For a principal bundle, using φx : G −→ Gx we may transform the right

translations of G into a right action of G on Gx as follows.

Take u ∈ G and z ∈ Gx, and define the action by

zu = φx[(φ
−1
x z)u] .

It is easy to check that this action is independent of the choice of φ with

x ∈ Uφ and that the properties 2.2.12 (a) and (b) hold. These actions

determine a right action

ρξ : E ×G −→ E ,

(E =
∪
x∈B Gx, if the Gx are disjoint to each other).

2.5.2 Definition. Let G be a topological group. A principal G-fibration

(or simply, a principal fibration) is a pair (p, ρ) consisting of a fibration p :

E −→ B and a right action ρ : E ×G −→ E such that the diagram

E ×G
proj1

��

ρ // E

p

��
E p

// B
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is commutative; that is, for every x ∈ E and g ∈ G, one has that p(xg) =

p(x).

A fiber map (f, f) : p −→ p′ between principal G-fibrations is called a

principal map if

f(zu) = f(z)u , z ∈ E , u ∈ G ,

in other words, if the map f : E −→ E ′ is equivariant.

Again, principal G-fibrations and principal maps build a category.

The trivial fibration proj1 : B × G −→ B, together with the action ρ :

(B×G)×G −→ B×G given by ρ((x, v), u) = (x, vu) is a principal fibration

called the trivial principal G-fibration. If A ⊂ B, then ρ : E × G −→ E

induces a map ρA : (p−1A)×G −→ p−1A that equips pA : p−1A −→ A with

the structure of a principal fibration. We shall denote it again by pA.

A principal fibration (p, ρ) is called locally trivial, if for every z ∈ B, there

is a neighborhood U of z and a principal equivalence (that is, a principal map,

that is an equivalence) between (pU , ρU) and the trivial principal G-fibration

over U .

2.5.3 Theorem. The assignments

ξ 7−→ (pξ, ρξ)

(f, f) 7−→ (f̂ , f)

determine a functor from the category of principal G-bundles to the category

of locally trivial principal G-fibrations. In particular, they assign to the trivial

principal bundle, the trivial principal fibration (cf. 2.3.22).

Proof: First we show that ρξ is continuous. For that we recall the definition

of the topology of E, 2.3.14. Let A be an atlas for ξ. In the diagram

∪
φ∈A{φ} × Uφ ×G×G

ρ′ //

Φ×idG
��

∪
φ∈A{φ} × Uφ ×G

Φ
��

E ×G ρ
// E ,

let ρ′ be given by ρ′(φ, x, v, u) = (φ, x, vu). The diagram is commutative, Φ

is an open map (see 2.3.18), and therefore, also Φ × idG is open. Thus it is

an identification. Since Φρ′ is continuous, one proves the assertion.
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The fibration p = pξ is locally trivial, since for every φ ∈ A, Φ induces a

principal map

Uφ ×G

proj1 $$I
II

II
II

II
Φ′

// p−1Uφ

pUφ{{ww
ww
ww
ww
w

Uφ .

If ξ is trivial, that is, if its atlas consists of just one chart φ, then the previous

considerations imply that pξ is trivial, through the trivialization

Φ′ = Φ : Uφ ×G = B ×G −→ p−1Uφ = E .

By 2.3.22, we still have to prove that the determined fiber maps are principal

maps, that is, that they are equivariant. Namely, f̂(zu) = f̂(z)u, z ∈ Eξ, u ∈
G. Take pz = p(zu) = x ∈ Uφ and fx = y ∈ Uψ. Then fx = ψy ◦ g(x) ◦ φ−1

x ,

and all three maps on the right-hand side are equivariant, i.e., compatible

with the right action of G, (cf. 2.5.1). From 2.3.19 one has

f̂(zu) = fx(zu)

= ψy ◦ g(x) ◦ φ−1
x (zu)

= (ψy ◦ g(x) ◦ φ−1
x (z))u

= fx(z)u

= f̂(z)u .
⊓⊔

2.5.4 Theorem. Let ξ and ξ′ be principal G-bundles, and let (h, h) : pξ −→
pξ′ be a principal map between their determined fibrations. Then there is a

unique principal G-bundle map (f, f) : ξ −→ ξ′ such that f̂ = h and f = h.

Proof: Uniqueness is clear by the definition of f̂ (2.3.19). For the existence

we have that f has to coincide with h on the fibers. Thus, take

fx(z) = h(z) for z ∈ Gx .

If y = f(x), then one has fx(z) ∈ G ′y, since (h, h) is a fiber map. We have to

prove that fx is bijective and that f = {fx} is compatible with the atlases.

Take φ ∈ A, ψ ∈ A′, and v ∈ G. Then

(ψ−1
y fxφx)(v) = (ψ−1

y hφx)(ev)

= (ψ−1
y hφx(e))v ;

the last equality holds, since by assumption, ψ−1
y , h, and φx are compatible

with the right action of G, (see 2.5.1, 2.5.2). Now g(x) = ψ−1
y hφx(1) ∈ G
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defines a bijective map from G into itself (left translation by g(x)); since ψy
and φx are bijective, so is also fx. We still have to prove (cf. 2.3.3 (C2)) that

the mapping x 7→ g(x) is continuous on Uφ ∩ f
−1
Uψ. This follows, since we

may write g as the following composite of continuous maps:

Uφ ∩ f
−1
Uψ // (Uφ ∩ f

−1
Uψ)×G

Φ| // p−1
ξ (Uφ ∩ f

−1
Uψ)

x � // (x, 1) � // φx(1)

// p−1
ξ (Uψ)

(Φ| )−1

≈
// Uψ ×G

proj2 // G
� // fφx(1)

� // (y, ψ−1
y fφx(1))

� // ψ−1
y fφx(1) .

Finally, f̂ = h is clear. ⊓⊔

2.5.5 Theorem. A principal bundle ξ is trivial if and only if the fibration

pξ has a section.

Proof: If ξ es trivial, so is also the determined fibration pξ (see 2.5.3). There-

fore, pξ has a section.

Assume conversely that pξ has a section s : B −→ E. We define a map

f : B × G −→ E by f(b, v) = s(b)v. Hence (f, idB) is a principal map from

the trivial principal fibration proj1 : B × G −→ B to pξ. proj1 belongs to

the trivial principal bundle over B, so (f, idB) belongs to the bundle map

(2.5.4), that, by 2.3.13 is an equivalence; but this means that ξ is trivial. ⊓⊔

2.5.6 Remark. If ξ is not a principal bundle, then pξ may have a section,

even though ξ is nontrivial. For example, for a vector bundle there is always

a 0-section.

Other interesting (related) example is the following.

2.5.7 Example. The Moebius strip has a section induced by the map I −→
I × I, given by s 7→ (s, 1

2
) (see 1.1.1 (b)). Associated bundles are simulta-

neosuly trivial. The associated principal bundle of the Moebius strip is the

double covering map of the circle, which obviously does not have a section

(see Figure 2.3).

Intuitively, we can say that the total space of a trivial fibration is com-

posed of “layers”, that are the images of sections. If a principal fibration has

a section, we may “transport” it by means of the group action, so that each

point of the total space lies in the image of a section (one says that the total

space is “foliated”). Cf. the proof of 2.5.5.
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Figure 2.3

2.5.8 Theorem. For each locally trivial principal fibration p : E −→ B,

with group action ρ : E×G −→ E, there is a unique principal bundle ξ such

that p = pξ, ρ = ρξ.

Proof: Let {Uj | j ∈ J} be an open cover of B and let pUj be trivial. Assume

the principal maps

Φj : Uj ×G −→ p−1Uj

describe the local triviality. We have to define ξ = (G,G,B;G,A). Obvi-

ously, we have to set Gx = p−1(x). A = {φj}, φj = {φj,x | x ∈ Uj}, and
φj,x : G −→ Gx will be given by φj,x(u) = Φj(x, u), u ∈ G. φj,x is bijective,

since Φj is a homeomorphism. Since Φj is compatible with the right action

of G, φj,x is also bijective, and one has

φ−1
i,xφj,x(v) = φ−1

i,xφj,x(e)v, x ∈ Ui ∩ Uj ,

and we define gij(x) = φ−1
i,xφj,x(e). So, gij : Ui ∩ Uj −→ G is continuous,

because

(x, gij(x)) = Φ−1
i Φj(x, 1).

A is thus an atlas for G (where G acts on itself by left translation). Hence,

ξ is a principal bundle.

If we now construct the fibration corresponding to ξ, we may ask if the

space E =
∪
x∈B Gx recovers its original topology. This is, in fact, the case,

since the map

Φ :
∪

Uj ×G× {j} −→ E ,

which according to 2.3.14 has to be constructed, must be an identification,

which is even an open map if one takes in E the original topology. On the

other hand, ρξ = ρ, since φj,x is compatible with the right action (see 2.5.1).

All this shows the existence of a bundle ξ with the desired properties. Let
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ξ′ be another bundle with these properties. From pξ = pξ′ one obtains that

both set bundles G and G ′ are equal. The equality of the corresponding fiber

will be obtained after proving that the identity of the set bundles is a bundle

map (2.3.5, 2.3.8). But the identity of pξ is a principal map. Therefore, 2.5.4

gives us the desired result. ⊓⊔

Let E be a topological group, G a subgroup of E, and B = E/G the set

of left cosets {zG | z ∈ E}. We endow B with the identification topology

given by the natural projection p : E −→ B (that is, B is a homogeneous

space). The action ρ : E ×G −→ E is given by ρ(z, u) = zu and turns (p, ρ)

into a principal fibration. We shall analyze under what conditions this is

locally trivial.

2.5.9 Theorem. If there exists an open neighborhood U of p(e) (where e =

1 ∈ E is the neutral element), and a map s : U −→ p−1U such that p◦s = idU
(i.e., a section over U , or a local section), then (p, ρ) is a locally trivial

principal fibration.

Proof: Let x ∈ B be any point, say x = p(z). Then U ′ = zU is an open

neighborhood of x (E acts on B by left translation; 2.2.18).

The map s′ : U ′ −→ p−1U ′ given by y 7→ zs(z−1y) is continuous, and

since

ps′(y) = p(zs(z−1y)) = zps(z−1y) = zz−1y = y ,

it is a section over U ′.

Let U be open in B and s a section over U . Then

U ×G −→ p−1U

(x, v) 7−→ s(x)v

is a principal map. It has as inverse the map

p−1U −→ U ×G
z 7−→ (p(z), sp(z)−1 z) ,

which is also a principal map. Thus, p is trivial over U . This, together with

the first part of the proof, yields the desired statement. ⊓⊔

2.5.10 Remark. The assumption of the previous theorem (the existence

of a local section) holds, for example, if E is locally compact and finite

dimensional (e.g. a finite CW-complex) and G is a closed subgroup (cf. [15,

Appendix 1])
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The following special case is easy to grasp. Take E to be a Lie group and

G a closed subgroup, (cf. Chevalley [2, p. 110, Prop. 1]).

2.5.11 Definition. Let ξ = (G,G,B;G,A) be a principal bundle and H a

closed subgroup of G. We define a bundle

ξ/H = (G/H, G̃, B;F , Ã)

as follows. H acts on every Gx on the right. Consider the equivalence relation

in Gx given by z1 ∼ z2 if there exists h ∈ H such that z1 = z2h. Let Gx/H
be the set of equivalence classes. Setting Fx = Gx/H we may define

Ã = {φ̃ | φ ∈ A} , φ̃ = {φ̃x | x ∈ Uφ}

such that

φ̃x : G/H −→ Fx
is the bijection canonically induced by φx. Thus ψ̃−1

x ◦ φ̃x : G/H −→ G/H

is induced by ψ−1
x ◦ φx = g(x) ∈ G.

If the natural action (2.2.18) G × G/H −→ G/H is effective, then ξ/H

with this action and structure group G̃ = G is a fiber bundle.

If this action is not effective, then from uvH = vH (v ∈ G, u ∈ G), one
obtains v−1uv ∈ H, so that u ∈ vHv−1; thus, u ∈

∩
v∈G vHv

−1. The group

H0 =
∩
v∈G vHv

−1 is the maximal normal subgroup of G contained in H.

The natural action

G/H0 ×G/H −→ G/H

is now effective and defining G̃ = G/H0, ξ/H turns out to be a fiber bundle

(considering ψ̃−1
x ◦ φ̃x as an element of the quotient group G/H0).

2.5.12 Definition. Let p : E −→ B be the fibration corresponding to ξ

and p̃ : Ẽ −→ B the one corresponding to ξ/H. H acts, as a subgroup of

G, on E. The set Ẽ is obtained from E by identifying with respect to the

action of H (i.e., dividing out the H-action). Let π : E −→ Ẽ be the natural

projection.

2.5.13 Lemma. π is an identification.

Proof: The topologies of both E and Ẽ are given through the open maps Φ

and Φ̃ (2.3.14). Consider the diagram∪
Uφ ×G π′

//

Φ
��

∪
Uφ ×G/H

Φ̃
��

E π
// Ẽ .
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This diagram is commutative if one takes π′ on each summand as the product

of the identity with the natural projection q : G −→ G/H. q is an open map,

therefore, also π′. Thus, π ◦Φ = Φ̃ ◦ π′ is an identification and hence also Φ.

Finally, π is also one. ⊓⊔

2.5.14 Definition. Let ξ = (F,G,B;F ,A) be a fiber bundle. The princi-

pal bundle ξ̃ = (G,G,B;G, Ã) associated to ξ is described as follows.

We say that a map f : F −→ Fx is admissible if φ−1
x ◦ f ∈ G for φ ∈ A

and x ∈ Uφ.

This definition is independent of the choice of φ such that x ∈ Uφ.

Namely, take

Gx = {f | f : F −→ Fx is admissible} ,

φ̃x : G −→ Gx given by v 7→ (F
v−→ F

φx−→ Fx) ;

that is, φ̃x(v) = φx ◦ v. Since φ−1
x ◦ (φx ◦ v) = v ∈ G, φx ◦ v is admissible

and thus it lies in Gx. φ̃x is bijective. From

ψ̃−1
x φ̃x(v) = ψ−1

x ◦ φx ◦ v = g(x)v ,

it follows that

Ã = {φ̃ | φ ∈ A}

is an atlas and ξ̃ is associated to ξ (2.4.9). ⊓⊔

2.5.15 Exercise. Prove that ξ̃ can be constructed using the coordinate

transformations of ξ and G as fiber (where G acts on itself by right transla-

tion).

2.5.1 Stiefel Manifolds

We use the previous ideas to make some computations of the homotopy

groups of the Stiefel manifolds, by defining adequate fibrations.

A k-frame (x1, . . . , xk) in Rn consists of k orthonormal vectors xi ∈ Rn,

1 ≤ i ≤ k.

2.5.16 Definition. The set VSn,k = {(x1, . . . , xk) | (x1, . . . , xk) is a k-

frame in Rn} ⊂ Rnk with the relative topology induced by that of Rnk is

called the Stiefel manifold (of k-frames in Rn).
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The orthogonal group On acts on VSn,k (cf. Section 2.2) via

On × VSn,k −→ VSn,k
(A, (x1, . . . , xk)) 7−→ (Ax1, . . . , Axk) ,

since an orthogonal matrix A sends an (orthonormal) k-frame to an (or-

thonormal) k-frame. This action is transitive, but it is not effective. Let

(e1, . . . , en) be the canonical basis in Rn and take z0 = (e1, . . . , ek) ∈ VSn,k.
The equation Az0 = z0 is equivalent to the fact that the matrix A has the

form (
1 0
0 B

)
,

where 1 represents the identity matrix in Ok and B ∈ On−k.

Via

B 7−→
(
1 0
0 B

)
we include On−k as a subgroup (!) of On. By 2.2.20, the mapping A 7→ Az0
induces a homeomorphism

On/On−k
≈−→ VSn,k ,

(v1, . . . , vn) 7−→ (v1, . . . , vk)

since On is compact and VSn,k is Hausdorff. We identify both spaces through

this homeomorphism.

Take k ≤ l. Through the mapping

A 7−→
(
1 0
0 A

)
we may consider On−l as a subgroup of On−k. Mapping (x1, . . . , xl) to

(x1, . . . , xk) we obtain a map

(2.5.17)

VSn,l // VSn,k

On/On−l On/On−k .

By 2.5.9, one has, in particular, that

On = VSn,n −→ VSn,k = On/On−k

is a principal fibration with structure group On−k. The only thing that one

has to be convinced of, is that the map (2.5.17) corresponds to taking left

cosets in On of the subgroup On−k.
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By 2.5.11 and 2.5.12,

On/On−l −→ On/On−k

is a locally trivial fibration obtained from a fiber bundle with fiber On−k/On−l

and structure group On−k/H0, where

H0 =
∩

B∈On−k

BOn−lB
−1 .

For k = l, H0 = On−l. For k < l, H0 = {1}; namely, take A ∈ H0, then

we can consider A as a map from Rn−k into itself via ei 7→ Aei, 1 ≤ i ≤
n − k. Since k < l, every A1 ∈ On−1 leaves the vector e1 fixed, and since

BA1B
−1Be1 = Be1, every vector remains fixed under A = BA1B

−1, that is,

A = 1.

2.5.18 Theorem. πi(VSn,k) = 0 for i < n− k.

Proof: By induction on k. For k = 1, VSn,1 = Sn−1. The map VSn,k+1 −→
VSn,k is a locally trivial fibration with fiber VSn−k,1 = Sn−k−1. From its

exact homotopy sequence we choose the exact portion

πi(Sn−k−1) −→ πi(VSn,k+1) −→ πi(VSn,k) .

The group on the left-hand side is zero if i < n− k− 1, the one on the right-

hand side, by induction hypothesis is zero if i < n−k. Thus, πi(VSn,k+1) = 0

for i < n− (k + 1). ⊓⊔

2.6 Twisted Products and

Associated Bundles

In this section we show how the principal G-fibration determined by a prin-

cipal G-bundle relates to the fibration determined by an associated G-bundle

with an arbitrary fiber F .

2.6.1 Definition. Let G be a topological group, E a right G-space, and F

a left G-space. There is a left action of G on E × F given by

E × F ×G −→ E × F ,
(x, y, g) 7−→ (xg−1, gy) .
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This action is called the diagonal action of G on E×F . We define the twisted

product of E and F to be the orbit space

E ×G F = E × F/G

given by identifying (x, y) with (xg−1, gy) (see 2.2.21).3 We denote the orbits,

namely the elements of E ×G F , by [x, y]. Observe that [xg, y] = [x, gy].

2.6.2 Exercise. Prove that the twisted product is functorial. More pre-

cisely, show that there is a category G-Top, whose objects are G-spaces and

whose morphisms are equivariant maps, namely maps f : X −→ Y such

that f(gx) = gf(x) (or f(xg) = f(x)g in the case of a right action), where

x ∈ X and g ∈ G. Then prove that the twisted product is a two-variable

functor from G-Top to Top such that if f : X −→ Y and f ′ : X ′ −→ Y ′ are

equivariant, then they induce a map f ×G f ′ : X ×G X ′ −→ Y ×G Y ′ given

by [x, x′] 7→ [f(x), f ′(x′)].

2.6.3 Lemma. Take E = B × G with the right action ρ : E × G −→ E

given by ((b, g), h) 7→ (b, gh), and let F be a (left) G-space. Then there is a

canonical homeomorphism α : E×GF −→ B×F such that proj1α[(b, g), y] =

b; in other words, one has a commutative diagram

(B ×G)×G F ≈
α //

&&NN
NNN

NNN
NNN

B × F

proj1{{ww
ww
ww
ww
w

B ,

where the top arrow is a homeomorphism.

Proof: The properties of the (left) action of G on F (see 2.2.12 (a)) imply

that the map α′ : B × G × F −→ B × F given by α′(b, g, y) 7→ (b, gy)

is compatible with the identification B × G × F −→ (B × G) ×G F , and
thus it induces a map α : (B × G) ×G F −→ B × F . On the other hand,

the map β : B × F −→ (B × G) ×G F given by β(b, y) = [(b, e), y], where

e ∈ G is the neutral element, is the inverse of α. Hence α and β are inverse

homeomorphisms with the desired property. ⊓⊔

Assume that p : E −→ B is a principal G-fibration. Then we have a right

G-action on E such that for every x ∈ E, p(xg) = p(x) (see 2.5.2). Consider

the map q′ = p ◦ proj1 : E × F −→ B. One has that q′(xg, g−1y) = p(xg) =

p(x) = q′(x, y); therefore, q′ is compatible with the identification

E × F −→ E × F/G = E ×G F ,

and thus it induces a map q : E ×G F −→ B. We have the following.

3This construction is sometimes known as the Borel construction.
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2.6.4 Proposition. Let p : E −→ B be a locally trivial principal G-fibration

and F a (left) G-space. Then q : E ×G F −→ B is a locally trivial fibration

with fiber F .

Proof: It is enough to find an open cover {Uφ} of B and homeomorphisms

φ̃ : Uφ × F −→ q−1(Uφ) such that qφ̃(b, y) = b.

Since p : E −→ B is locally trivial, there is an open cover {Uφ} of B and

homeomorphisms φ : Uφ × G −→ p−1(Uφ) such that pφ(b, g) = b and, for

every h ∈ G, φ(b, gh) = φ(b, g)h.

Observe that q−1Uφ = p−1Uφ ×G F . By Lemma 2.6.3, there is a homeo-

morphism

α : (Uφ ×G)×G F −→ Uφ × F .

Since φ is an equivariant homeomorphism, by 2.6.2 we can define

φ̃ = (φ×G idF ) ◦ α−1 : Uφ × F −→ q−1Uφ = p−1Uφ ×G F .

Since both α−1 and φ×G idF are homeomorphisms, φ̃ is one too. Using 2.6.3,

one easily verifies that q ◦ φ̃ = proj1 : Uφ × F −→ Uφ; in other words, the

diagram

Uφ × F
φ̃ //

proj1 ##G
GG

GG
GG

GG
p−1Uφ ×G F

yysss
sss

sss
ss

Uφ

commutes. ⊓⊔

2.6.5 Definition. Given a locally trivial, principal G-fibration p : E −→
B, we call the locally trivial fibration q : E ′ = E ×G F −→ B its associated

fibration with fiber F .

We have the following, that is the main result of this section.

2.6.6 Theorem. Take a principal G-bundle ξG = (G,G,B;G,A), and an

associated G-bundle ξ = (F,G,B;F ,A) with fiber F . Let p = pξG : E −→ B

be the locally trivial fibration determined by ξG and q′ = pξ : E ′ −→ B the

locally trivial fibration determined by ξ. Then q′ : E ′ −→ B is the fibration

with fiber F associated to the principal fibration p : E −→ B.

Proof: By 2.3.14 and 2.3.18, we have open identifications

Φ :
∪
φ∈A

Uφ ×G× {φ} −→ E ,
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Φ′ :
∪
φ∈A

Uφ × F × {φ} −→ E ′ .

Since Φ is an open identification that is also equivariant, it is an easy exercise

to prove that

Φ×G idF :

(∪
φ∈A

Uφ ×G× {φ}

)
×G F −→ E ×G F ,

is also an open surjective map, thus an identification.

Since by 2.6.3, (Uφ × G × {φ}) ×G F is canonically homeomorphic to

Uφ × F × {φ}, then one has a canonical homeomorphism

Ψ :

(∪
φ∈A

Uφ ×G× {φ}

)
×G F −→

∪
φ∈A

Uφ × F × {φ}

such that Ψ[(b, g, φ), y] = (b, gy, φ), for φ ∈ A, b ∈ Uφ, g ∈ G and y ∈ F .
Since Φ′ ◦ Ψ is obviously compatible with the identification Φ ×G idF , it

induces a homeomorphism ψ : E ×G F −→ E ′ such that the triangle

E ×G F

q
$$H

HH
HH

HH
HH

ψ

≈
// E ′

q′~~~~
~~
~~
~~

B

commutes, where q : E ×G F −→ B is as in Proposition 2.6.4. ⊓⊔

2.7 Induced Bundles

Given a fiber bundle over a space B and a map A −→ B, we study here how

this map induces a fiber bundle over A.

2.7.1 Definition. Let ξ = (F,G,B;F ,A) be a fiber bundle and α : A −→
B a continuous map. We define a new fiber bundle

α∗(ξ) = (F,G,A; F̃ , Ã)

by the following:

F̃a = Fα(a)
φ̃ = {φ̃a : F −→ F̃a | a ∈ α−1(Uφ)}
φ̃a = φα(a)

Ã = {φ̃ | φ ∈ A}
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It is easy to check that 2.3.1 (B1)–(B3) hold. The fiber bundle α∗(ξ) is called

the fiber bundle induced by ξ through the map α.

In case that α : A ↪→ B is an inclusion, the induced bundle α∗(ξ) is called

the restriction of ξ to A and is usually denoted by ξ|A.

2.7.2 Exercise. Prove that through a constant map, a trivial bundle is

induced.

In what follows, we analyze the relationship between theprevious defini-

tion and that of an induced fibration (see 1.4.22).

Let Ẽ −→ A be the fibration induced by p = pξ through α : A −→ B.

Then, as sets, Ẽ =
∪
a∈A{a} × Fa is equal to Eα∗(ξ). (Observe that for the

construction of the fibration corresponding to ξ, one has to provide that the

fibers are mutually disjoint; see 2.3.14). However, it is also true that both

Ẽ and E∗
α(ξ) have the same topology. For seeing this, one has to prove that

the map Φ̃ : Uφ̃ × F = α−1Uφ × F −→ Ẽ is a homeomorphism over some

open set; thus the map
∪
φ̃ Uφ̃ × F −→ Ẽ is an identification (cf. 2.3.14).

The image set Φ̃(α−1Uφ × F ) = p̃−1α−1Uφ is open in Ẽ, and one has

Φ̃(a, v) = (a, z) with z = φ̃a(v) = φα(a)(v) = Φ(α(a), v). Therefore, Φ̃ is

continuous. The inverse map Φ̃−1 is also continuous, as one deduces from

v = proj2Φ
−1(z).

We have proved the following result.

2.7.3 Theorem. α∗(pξ) = pα∗(ξ). ⊓⊔

We can define a bundle map

(α⋆, α) : α∗(ξ) −→ ξ by α⋆a = id : F̃a −→ Fα(a) .

In fact, this is a bundle map, since

ψ−1
α(a) ◦ α

⋆
a ◦ φ̃a = ψ−1

α(a) ◦ φα(a) = gψφ(α(a))

lies in G and depends continuously on a ∈ A. The next result follows imme-

diately.

2.7.4 Theorem. Let (α̃⋆, α) : α∗(pξ) = pα∗(ξ) −→ pξ be the fiber map corre-

sponding to the bundle map (α⋆, α) : α∗(ξ) −→ ξ (cf. 2.3.19). Then, α̂⋆ = β

(β as in 1.4.22). ⊓⊔
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2.7.5 Note. Let ξ be a fiber bundle. If {Ui | i ∈ I} is the associated

cover and {gij} are the corresponding coordinate transformations, then the

associated cover of α∗(ξ) is {α−1Ui | i ∈ I}, and the corresponding coordinate

transformations are {gijα}.

2.7.6 Note. If ξ is a principal bundle, then also α∗(ξ) is a principal bun-

dle. Analogously, α∗(p) is a principal fibration if p is a principal fibration.

For this last, one has to define the right action of G on Ẽ by means of

((a, z), v) 7→ (a, zv), (a, z) ∈ Ẽ, v ∈ G. Then (β, α) becomes a principal

map. In (pα∗(ξ), ρα∗(ξ)) one obtains also the same structure as a principal

bundle (cf. 2.5.3).

2.7.7 Theorem. Let (f, α) : ξ̂ −→ ξ be a bundle map between

ξ̂ = (F,G,A; F̂ , Â) and ξ = (F,G,B;F ,A) .

Then there exists a unique bundle map (h, idA) : ξ̂ −→ α∗(ξ) such that the

diagram of bundles

ξ̂
(f,α)

((PP
PPP

PPP
P

(h,idA)

��
ξ

α∗(ξ)
(α⋆,α)

66mmmmmmm

is commutative.

Proof: The commutativity of the diagram requires to define ha = fa, from

where the uniqueness of h follows. The so-defined map h determines a bundle

map, since

ψ̃−1
a ◦ ha ◦ φ̂a = ψ−1

α(a) ◦ fa ◦ φ̂a
lies in G and depends continuously on a ∈ A, because (f, α), by assumption,

is a bundle map. ⊓⊔

There are some consequences of the previous result.

2.7.8 Corollary. ξ̂ is equivalent to α∗(ξ) over idA (2.3.13). ⊓⊔

2.7.9 Corollary. If ξ is equivalent to ξ′ over idB, then α∗(ξ) is equivalent

to α∗(ξ′) over idA for any continuous map α : A −→ B.

Proof: Let (f, idB) : ξ −→ ξ′ be an equivalence. Then (f ◦α⋆, α) : α∗(ξ) −→
ξ′ is a bundle equivalence. The assertion then follows from 2.7.8. ⊓⊔
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2.7.1 Functional Bundles

Let ξ = (F,G,B;F ,A) and ξ̂ = (F,G,A; F̂ , Â) be fiber bundles. We call a

bundle map h : F̂a −→ Fb, a ∈ A, b ∈ B admissible if the homeomorphism

φ−1
b ◦ h ◦ φ̂a lies in G. This definition is independent of the choice of the

charts φ and φ̂ such that a ∈ Uφ̂, b ∈ Uφ, as follows from

ψ−1
b ◦ h ◦ φ̂a = (ψ−1

b ◦ φb) ◦ φ
−1
b ◦ h ◦ φ̂a ◦ (φ̂

−1
a ◦ ψ̂a) ,

since each of the compositions in parentheses lies in G, by definition of an

atlas.

2.7.10 Definition. The functional bundleApl(ξ̂, ξ) is a bundle ξ̃ = (G, G̃, A×
B; F̃ , Ã), where

F̃(a,b) = {h : F̂a −→ Fb | h is admissible}

with atlas

Ã = {(φ̂, φ) ∈ Â × A}

such that

(φ̂, φ)(a,b) : G −→ F̃(a,b) , (a, b) ∈ Uφ̂ × Uφ
is given by

v 7−→ φb ◦ v ◦ φ̂−1
a .

In order to check that the bundle Apl(ξ̂, ξ) is well defined, we have to

prove that φb ◦ v ◦ φ̂−1
a ∈ F̃(a,b); that is, that it is admissible, and that

(φ̂, φ)(a,b) is bijective.

The former follows from

φ−1
b ◦ (φb ◦ v ◦ φ̂

−1
a ) ◦ φa = v ∈ G ,

and the latter from the fact that one has an inverse of (φ̂, φ)(a,b) given by

v 7−→ φ−1
b ◦ v ◦ φ̂a .

Now the question is if A is an atlas for some adequate group G̃. We have

(ψ̂, ψ)−1
(a,b)(φ̂, φ)(a,b)(v) = ψ−1

b ◦ φb ◦ v ◦ φ̂
−1
a ◦ ψ̂a

= gψφ(b) v gψ̂◦φ̂(a)
−1

= λ
(
gψ◦φ(b), gψ̂◦φ̂(a), v

)
if we define

λ : (G×G)×G −→ G
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as the left action of the product group G×G on G given by

((û, u), v) 7−→ uvû−1.

As a matter of fact, this action is not always effective; namely, if uvû−1 = v

for every v ∈ G, one has, in particular, uû−1 = e, that is, u = û and thus,

u ∈ Z(G), where Z(G) denotes the center of the group G.

Take H = {(z, z) ∈ G×G | z ∈ Z(G)} and

G̃ = G×G/H .

Since H ⊂ G×G is a normal subgroup, G̃ is a group. The action of G̃ on G

induced by λ (and again denoted by λ) is effective and Ã becomes an atlas

for G̃, since the mapping

Uφ̂ × Uφ ∩ Uψ̂ × Uψ ∋ (a, b) 7−→
(
gψ̂◦φ̂(a), gψ◦φ(b)

)
∈ G̃

is obviously continuous.

Let (f, α) : ξ̂ −→ ξ be a bundle map. If ξ̃ = Apl(ξ̂, ξ), the bundle map

determines a map s : A −→ Eξ̃ given by

A ∋ a 7−→
(
fa : F̂a −→ Fα(a)

)
∈ F̃(a,α(a))

that, by definition of a bundle map, is admissible. One has that p̃s(a) =

(a, α(a)).

2.7.11 Lemma. Let α : A −→ B be a continuous map. The assignment

(f, α) 7→ s given above yields a one-to-one relation between bundle maps

(f, α) : ξ̂ −→ ξ and continuous maps s : A −→ Eξ̃ such that p̃s(a) =

(a, α(a)).

Proof: We prove that f is compatible with the atlases Â and A if and only

if s is continuous. That the map is bijective is obvious. The diagram

Uφ̂ ∩ α−1Uφ
g //

s
((QQ

QQQ
QQQ

QQQ
Q

Uφ̂ × Uφ ×G

Φ̃vvmmm
mmm

mmm
mmm

p̃−1(Uφ̂ × Uφ)

commutes if

g(a) = (a, α(a), φ−1
α(a) ◦ fa ◦ φ̂a) and Φ̃(a, b, v) = (φ̂, φ)(a,b)(v) = φb ◦ v ◦ φ̂−1

a .
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The map Φ̃ defines the topology on Eξ̃ (see 2.3.14) and is a homeomor-

phism. The fact that s is continuous at a is equivalent to the fact that

φ−1
α(a) ◦ fa ◦ φ̂a is continuous at a. This last means that f is compatible with

the atlases Â and A. Since the sets Uφ̂ ∩ α−1Uφ constitute a cover of A, the

assertion follows. ⊓⊔

2.7.12 Theorem. Let α0, α1 : A −→ B be homotopic maps. If A is a CW-

complex and ξ is a bundle over B, then the induced bundles α∗
0(ξ) and α

∗
1(ξ)

are equivalent over idA.

Proof: Let ξ̂ = α∗
0(ξ). We shall prove that there is a bundle map (f, α1) :

ξ̂ −→ ξ. By 2.7.7, the bundle α∗
1(ξ) is equivalent to ξ̂ over idA. Let αt be a

homotopy between α0 and α1. Consider

Eξ̃

p̃
��

A
ht

//

s0

;;w
w

w
w

w
A×B ,

with the homotopy ht(a) = (a, αt(a)). For t = 0 the diagram commutes if s0
corresponds to the bundle map (α⋆0, α0) : ξ̂ −→ ξ as in 2.7.11 (see 2.7.4). If

A is a CW-complex and p̃ is locally trivial, then by 1.4.8 and 1.4.9, we can

lift ht, with the initial condition s0, say to a map st. s1 gives us by 2.7.11 a

bundle map (f, α1) : ξ̂ −→ Eξ̃. ⊓⊔

We have the following consequences of the previous result.

2.7.13 Corollary. If α : A −→ B is nullhomotopic, then α∗(ξ) is a trivial

bundle (A is a CW-complex). ⊓⊔

2.7.14 Corollary. Every fiber bundle over a contractible CW-complex is

trivial.

Proof: Since ξ = (idA)
∗(ξ), and since idA ≃ 0, by 2.7.13, ξ es trivial. ⊓⊔

2.7.15 Note. The proof of Theorem 2.7.12 required the lifting of a certain

homotopy. The theorems of Dold [3], recalled in 1.4.14, allow us to weaken

the assumptions. One may either assume the space A to be paracompact,4

or the fiber bundle ξ to be numerable, i.e., such that it has an atlas whose

corresponding cover is numerable. In this latter case, the induced bundle

α∗
0(ξ) and the functional bundle are numerable.

4Every CW-complex is paracompact, as shown in [8].
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2.8 Universal Bundles

In 2.7 we saw that homotopic maps induce equivalent fiber bundles. We now

ask the opposite question. Namely, if there is a bundle ξ over an adequate

space B such that every bundle over A is induced through a map α : A −→ B.

Moreover, we ask if it is possible to choose ξ and B in such a way, that the

equivalence of the induced bundles implies that the maps through which they

are induced are homotopic.

2.8.1 Existence and Extension of Sections

Let ξ = (F,G,B;F ,A) be a fiber bundle and p : E −→ B the determined

fibration. Let B be a CW-complex, A ⊂ B a subcomplex and s : A −→ E

a section of p over A, that is, a map such that the composite p ◦ s is the

inclusion iA : A ↪→ B.

2.8.1 Question. When can s be extended to a section s̃ : B −→ E of p

over B (i.e., a section s̃ such that s̃|A = s)?

The following result answers this question giving a sufficient condition.

2.8.2 Theorem. If F is (n − 1)-connected, i.e., if πi(F ) = 0 for all i < n

(≤ ∞), and dim(B) ≤ n, then every section s over a subcomplex A of B can

be extended to all of B.

For n = 0 the theorem is trivial, since in this case B is discrete. For

n ≥ 1 one has π0(F ) = 0; namely, F is path connected. Thus πi(F ) is, up to

isomorphism, independent of the base point. Before passing to the proo, we

need some preparation.

2.8.3 Remark. Let Bk be the k-skeleton of B, k ≥ 0, and B−1 = ∅. Take

a section sk−1 of p : E −→ B over A∪Bk−1, k ≥ 0, and ek a k-cell of B −A
with characteristic map α : Bk −→ B, where Bk is the unit k-disk. Before

passing to the proof, we need some preparation.

We have the following situation:

Sk−1
sk−1◦(α|Sk−1 ) //� _

��

E

p

��
Bk α

//

r

55kkkkkkkkkk
B .
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The composition sk−1 ◦ (α|Sk−1) is well defined because the section sk−1 is

defined on α(Sk−1), since α(Sk−1) ⊂ Bk−1. In case that we can find the

lifting r, we can extend sk−1 to a section s′ over A ∪ Bk−1 ∪ ek by giving it

by

s′(x) =

{
sk−1(x) if x ∈ A ∪Bk−1,

rα−1(x) if x ∈ ek.

One can easily check that s′ is well defined and continuous, since α is an

identification, and that it is a section. We need conditions in order for r to

exist.

2.8.4 Lemma. In the diagram

Ẽ
β //

p̃

��

E

p

��
A α

// B ,

let p̃ = α∗(p) be the fibration induced by p through α and (β, α) the corre-

sponding fiber map (1.4.22). The assignment s̃ 7→ β ◦ s̃ defines a bijective

function

{sections of p̃} −→ {liftings of α}.

Proof: If r : A −→ E is a lifting of α, namely, if p◦r = α, let s̃r : A −→ Ẽ be

the section a 7→ (a, r(a)), ((a, r(a)) ∈ Ẽ, since α(a) = pr(a)). The mapping

r 7→ s̃r is the inverse of s̃ 7→ β ◦ s̃. ⊓⊔

Now we come back to 2.8.3. Consider the diagram

Ẽ

p̃

��

E

p

��
Sk−1

t
==z

z
z

z
� �

i
//

sk−1(α|Sk )

44jjjjjjjjjjjjjjjjjjjjjj Bk α
// B .

where p̃ = α∗(p)

According to 2.8.4 the lifting sk−1 ◦ (α|Sk) of α◦ i corresponds to a section

t : Sk−1 −→ Ẽ of p̃ over Sk−1 (more precisely, to a section in the fibration

induced by α ◦ i, which can be interpreted as restriction of p̃).

α∗(ξ) is a bundle over a contractible CW-complex; therefore, it is trivial

(2.7.14). Thus, also p̃ is trivial. Consequently, there is a homeomorphism f
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that makes the following diagram commutative:

Ẽ
f

≈
//

p̃
''OO

OOO
OOO

OOO
OOO

O Bk × F proj2 //

proj1
��

F

Bk
g

77oooooooo

Sk−1
?�

OO
t

WW

2.8.5 Lemma. The section t can be extended to a section over Bk if and

only if proj2 ◦ f ◦ t : Sk−1 −→ F can be extended to Bk.

Proof: Let t′ : Bk −→ Ẽ be an extension of t; then proj2◦f ◦t′ is an extension

of proj2 ◦ f ◦ t. Conversely, let g : Bk −→ F be an extension of proj2 ◦ f ◦ t.
Let t′ : Bk −→ Ẽ be given by t′(z) = f−1(z, g(z)). Clearly, t′ is a section

that extends t. ⊓⊔

Proof of 2.8.2: We proceed by induction over (the dimension of) the skeletons.

There exists always an extension s0 of s to A ∪ B0, since the 0-cells of

B0 −A constitute a discrete subspace. Let sk−1 be a section over A ∪Bk−1,

(k ≥ 1), that extends s.

There exists a section sk over A ∪Bk that extends s:

If k > dim(B), we simply set sk = sk−1.

If k ≤ dim(B) ≤ n, then, by assumption, πk−1(F ) = 0. Thus, every map

Sk−1 −→ F is nullhomotopic and can thus be extended to Bk. By 2.8.3–2.8.5,

sk−1 can be extended to every k-cell of B − A. Since B is a CW-complex,

the so extended map sk : A∪Bk −→ E is well defined and continuous. This

proves the theorem. ⊓⊔

The following theorem generalizes 2.8.2.

2.8.6 Theorem. Assume that ξ is a numerable bundle (for instance, if B is

paracompact), F is contractible, and A ⊂ B. Assume, moreover, that there

is a continuous map τ : B −→ [0, 1] with A ⊂ τ−1(1) such that a section s

over A can be extended to τ−1(0, 1]. Then s can be extended to B.

For the proof see Dold [3, 2.7, 2.8]. ⊓⊔
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2.8.7 Notation. If ξ is any bundle, in what follows we shall write ξ as

an (upper or sub-) index to indicate the parts that define it. So we have

ξ = (F ξ, Bξ, G
ξ;F ξ,Aξ), and pξ : Eξ −→ Bξ will denote the determined

fibration.

2.8.8 Construction. Let ξ and η be fiber bundles with Bξ = A, Bη = B,

fiber F and structure group G. We want to construct a bundle α with the

property that all bundle maps ξ −→ η are in one-to-one correspondence with

the sections of Eα −→ Bα (in analogy to 2.7.11).

Let γ = Apl(ξ, η) be the functional bundle (2.7.10) and ω the principal

bundle determined by η (2.5.14). Let

Eγ
pγ−→ A×B proj1−→ A

be the fibration determined by α.

The bundle α is defined as follows:

Fα =
∪
b∈B

Fωb = Eω (as topological spaces),

Bα = A

Fαa =
∪
b∈B

Fγ(a,b) = {h : F ξa −→ F
η
b | h is admissible and b is arbitrary} ,

Gα = G ,

φαa : Fα = Eω −→ Fαa given by

(v : F −→ Fηb ) 7→ (vφ−1
a : F ξa −→ F

η
b ) ,

φα = {φαa | a ∈ U ξ
φ} .

We have to check again that all these elements give us a fiber bundle. On

the way, we shall describe the action of G on Eω = Fα.

First assume that v is admissible; then also v ◦φ−1
a , (φa ∈ φξ, a ∈ U ξ

φ), is

admissible (cf. 2.7.1). Now,

ψ−1
a φαa (v) = v ◦ φ−1

a ◦ ψa
= v ◦ (gξψφ(a))

−1

= λα(gξψφ(a), v)

if we define the action λα : G × Eω −→ Eω by λα(u, v) = v ◦ u−1 (u−1

considered as a map F −→ F ). Moreover, λα is continuous; namely, if

ρ : Eω × G −→ Eω is the right action of G corresponding to the principal

bundle ω, then

λα(u, v) = ρ(v, u−1) .
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2.8.9 Definition. The fiber bundle α is called the partial functional bundle

of (ξ, η). We denote it by Apl1(ξ, η).

The equation

(2.8.10) Eα =
∪
a∈A

Fαa =
∪
a∈A

∪
b∈B

Fγ(a,b) = Eγ

is a set equality, and the diagram

Eγ

pγ
��

Eα

pα

��
A×B

proj1

// A

commutes.

2.8.11 Lemma. The spaces Eγ and Eα have the same topology.

Proof: Let φξ and φη be local charts corresponding to the open sets U ⊂ A

and V ⊂ B. Consider the diagram

(2.8.12)

U × V ×G id×Φω //

≈Φγ

��

U × p−1
ω (v) �

� // U × Eω
Φα
��

p−1
γ (U × V ) �

� // p−1
γ (U ×B) p−1

α (U) .

The maps Φ determine the topologies on the total spaces E.

We already had the equalities

G = F γ = F ω ,

Φγ(a, b, w) = φγ(a,b)(w) = φηb ◦ w ◦ (φ
ξ
a)

−1 ,

Φω(b, w) = φωb (w) = φηb ◦ w ,
Φα(a, v) = φαa ◦ v = v ◦ (φξa)−1 ,

that show that the diagram is commutative. If we endow Eγ with the topol-

ogy determined by γ, we have to show that p−1
α (U) is open in Eγ and that

Φα is a homeomorphism over p−1
α (U) (this way, the α-topology on Eα will be

determined). The map pα = proj1 ◦ pγ is continuous. Thus, p−1
α (U) is open.

Moreover, the map Φα|U×p−1
ω (V ) is a homeomorphism over p−1

γ (U × V ), see

Diagram (2.8.12). If φη varies along the atlas Aη, we obtain that the sets

U × p−1
ω (V ) build an open cover of U × Eω, and that the sets p−1

γ (U × V )

build an open cover of p−1
α (U). Hence, we obtain the assertion of the lemma.

⊓⊔
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2.8.13 Note. In 2.7.11 we assigned to every bundle map (f, f) : ξ −→ η

a map s : A −→ Eγ = Eα which is obviously a section of pα. It is easy to

see that this assignment yields a bijection between bundle maps ξ −→ η and

sections of pα.

2.8.2 n-Universal Bundles

We characterize here bundles that are universal for fiber bundles over spaces

B of bounded dimension.

2.8.14 Definition. Let η be a fiber bundle and ω the associated principal

bundle. η will be called n-universal (n ≤ ∞) if πi(Eω) = 0 for i < n. The

determined fibration pη is also called n-universal.

2.8.15 Theorem. Let η be an n-universal fiber bundle, A a CW-complex of

dimension ≤ n, A0 ⊂ A a subcomplex and ξ a fiber bundle over A. Then any

bundle map ξ|A0 −→ η can be extended to a bundle map ξ −→ η.

Proof: Note that Apl1(ξ|A0, η) = Apl1(ξ, η)|A0. With this remark and 2.8.13,

using the bundle map ξ|A0 −→ η, we obtain a section s0 : A0 −→ Eα
(α = Apl1(ξ, η)) of pα over A0. By assumption, πi(F

α) = 0 for i < n, since

F α = Eω. Theorem 2.8.1 guarantees that we can extend s0 to a section

s : A −→ Eα. From s, we obtain a bundle map (2.8.13) that extends the

given bundle map ξ|A0 −→ η. ⊓⊔

2.8.16 Definition. Let η be a fiber bundle. We may assign to each homo-

topy class [α] ∈ [A,Bη] an equivalence class of fiber bundles over A; namely

[α]∗(η) = [α∗(η)] ,

where [α] denotes the homotopy class of the map α and [ξ] denotes the

equivalence class of the bundle ξ.

By 2.7.12, this assignment is well defined (if A is a CW-complex). Denote

by kG(A) the set of equivalence classes of fiber bundles over A with fiber F

and structure group G, and let Ω(η) : [A,Bη] −→ kG(A) be the function just

defined.

2.8.17 Theorem. Let η be an (n + 1)-universal fiber bundle and A a CW-

complex such that dim(A) ≤ n. Then the function Ω(η) : [A,Bη] −→ kG(A)

is bijective.
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Proof: Ω(η) is surjective: Let ξ be any fiber bundle over A. In Theorem

2.8.15, choose A0 = ∅; thus, it gives us a bundle map ξ −→ η. From 2.7.8

and the definition of Ω(η) one obtains the assertion.

Ω(η) is injective: Let α0, α1 : A −→ Bη be maps such that α∗
0(η) and

α∗
1(η) are equivalent over idA. Take ξ = α∗

0(η); the assumed equivalence

of this bundle with α∗
1(η) gives us a bundle map (f1, α1) : ξ −→ η. Take

f0 = α⋆0, and let proj1 : A × I −→ A, ζ = (proj1)
∗(ξ), and iν : A −→ A × I

be such that iν(a) = (a, ν), ν = 0, 1. We have bundle maps

ζ|A× {ν} 33ξ
(i⋆ν ,iν)oo (fν ,αν) // η ,

since (i⋆ν , iν) is an equivalence, (cf. 2.3.13), and from there, a bundle map

ζ|(A× {0}) ∪ (A× {1}) −→ η .

By Theorem 2.8.15, there is an extension (f, α) : ζ −→ η of this last bundle

map, since dim(A×I) = dim(A)+1 ≤ n+1, A×({0}∪{1}) is a subcomplex

of A× I, and η is (n+1)-universal. In particular, α : A× I −→ Bη is a map

such that α ◦ iν = αν , that is, α0 and α1 are homotopic. ⊓⊔

2.8.18 Definition. If η is universal, namely ∞-universal, or n-universal

for all n, then the space Bη is called classifying space for the group G. It is

frequently denoted by BG.

2.8.19 Remark. Let g : A′ −→ A be continuous and ξ a bundle over A.

The bundle map ξ 7→ g∗(ξ) induces a function

g∗ = k(g) : kG(A) −→ kG(A
′)

converting kG into a functor. If η is a fiber bundle, then the diagram

[A,Bη]
Ω(η) //

g#

��

kG(A)

g∗

��
[A′, Bη]

Ω(η)
// kG(A

′)

is commutative, that is, Ω(η) is a natural transformation of functors. If η is

universal, then the functors [ , Bη] and kG are naturally equivalent. Given

two universal G-bundles η and η′, we obtain a natural equivalence of functors

[ , Bη] −→ [ , Bη′ ] .

If both Bη and Bη′ are CW-complexes, from our previous theorems, we have

maps α : Bη′ −→ Bη and β : Bη −→ Bη′ such that η′ = α∗(η) and η = β∗(η′).
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Then one has η = β∗α∗(η) = (αβ)∗(η) and η′ = (βα)∗(η′), and since η and

η′ are universal, α ◦ β ≃ idBη and β ◦ α ≃ idBη′ . Thus, Bη and Bη′ have the

same homotopy type. This shows, in particular, that the classifying space

BG is well defined, up to homotopy type. For further generalizations of this

see Dold [3, §7.].

2.9 Construction of Universal Bundles

In this section, we shall construct universal bundles in several instances.

2.9.1 Grassmann Manifolds

We construct here universal bundles for the groups G = Ok.

As we did in section 2.5, via the mappings

A 7−→
(
A 0
0 1

)
, resp. B 7−→

(
1 0
0 B

)
,

we shall consider the groups Ok, resp. On−k, as subgroups of On. Thus,

also Ok × On−k is a subgroup of On. From 2.5.9–2.5.12, taking E = On,

G = Ok ×On−k, H = On−k, we obtain the following result.

2.9.1 Proposition. The canonical projection

q : On/On−k −→ On/Ok ×On−k

is a locally trivial fibration. Corresponding to it there is a fiber bundle η = ηn,k
with fiber

(2.9.2) G/H ∼= Ok

and structure group

(2.9.3) G/H0
∼= Ok .

This is true, since On−k is the maximal normal subgroup of Ok × On−k

contained in On−k. ⊓⊔

The action G/H0 × G/H −→ G/H corresponds, via the canonical iden-

tifications (2.9.2)–(2.9.3), to the group multiplication. Thus, η is a principal



2.9 Construction of Universal Bundles 107

Ok-bundle and q = pη is a principal fibration. One can easily check that

the right action of Ok on On/On−k associated to ρn (cf. 2.5.1) is given by

([A], B) 7→ [AB], where [A] ∈ On/On−k represents the (left) coset of the

matrix A.

2.9.4 Theorem. The map q : On/On−k −→ On/Ok × On−k is an (n − k)-
universal principal fibration; that is, the fiber bundle ηn,k is an (n − k)-

universal Ok-bundle.

Proof: Recall that On/On−k = VSn,k. By 2.5.18, πi(On/On−k) = 0 for i <

n− k, thus the result. ⊓⊔

2.9.5 Remark. We describe the fibration q in a different way. For that,

consider the diagram

(2.9.6)

On/On−k
f //

q

��

VSn,k
pn,k

��
On/Ok ×On−k

f

// Grn,k ,

where Grn,k, as a set, consists of the k-dimensional subspaces of Rn. If

(x1, . . . , xk) ∈ VSn,k we denote by [x1, . . . , xk] the generated subspace, and

we define

pn,k(x1, . . . , xk) = [x1, . . . , xk] .

We furnish Grn,k with the identification topology. The space Grn,k is

called the Grassmann manifold of k-planes in Rn.

The map f is induced by the mapping

A 7−→ (Ae1, . . . , Aek) ,

(cf. 2.5.16) and the map f by the mapping

A 7−→ [Ae1, . . . , Aek] ,

A ∈ On. One can easily be convinced that A[e1, . . . , ek] = [e1, . . . , ek] if and

only if A ∈ On × On−k. With these definitions, Diagram (2.9.6) is com-

mutative. The map f is a homeomorphism; the map f is bijective and,

consequently, it is also a homeomorphism, since both q and pn,k are identifi-

cations.

The pair (f, f) is a principal map if one defines the action

(2.9.7) VSn,k ×Ok

mn,k−→ VSn,k
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by

((x1, . . . , xk), A) 7−→ (x1, . . . , xk)A ,

where the k-tuple (x1, . . . , xk) should be seen as a matrix with k columns

xi; the columns of the product form an orthonormal k-frame that gener-

ates the same plane as (x1, . . . , xk), and this is the k-frame we refer to by

(x1, . . . , xk)A.

Since the pair (f, f) is a principal map, by definition of the actions one

has

(ABe1, . . . , ABek) = (Ae1, . . . , Aek)B ,

and, obviously, both sides are the first k columns of the product matrix AB.

The (∞-)universal Ok-bundles are obtained by passing to the colimit. Let

us consider the diagram

VSn,k �
� //

pn,k

��

VSn+1,k
� � //

pn+1,k

��

· · ·

Grn,k
� � // Grn+1,k

� � // · · · ,

where the inclusions are induced by the canonical inclusion Rn ∼= Rn×{0} ↪→
Rn+1. One maps the k-frame (x1, . . . , xk) to its image under said inclusion.

For the Grassmann manifolds Grn,k and Grn+1,k, the inclusion is similarly

induced. Thus, each square in the diagram commutes.

2.9.8 Definition. Define

VS∞,k = colim
n→∞

VSn,k ,

Gr∞,k = colim
n→∞

Grn,k ,

p∞,k = colim
n→∞

pn,k : VS∞,k −→ Gr∞,k .

The space VS∞,k is the (∞-dimensional) Stiefel manifold of k-frames in R∞,

and the space Gr∞,k is the (∞-dimensional) Grassmann manifold of k-planes

in R∞.

2.9.9 Theorem. The map p∞,k : VS∞,k −→ Gr∞,k is a universal principal

Ok-fibration.

Proof: We divide the proof in several parts.

(a) First we prove that p∞,k is continuous. The union topology in VS∞,k =∪
n VSn,k is such that the canonical map from the topological sum

⨿
n VSn,k
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into VS∞,k is an identification. Similarly for Gr∞,k (and for any colimit).

From the commutativity of the diagram⨿
VSn,k //

⨿
pn,k

��

VS∞,k

p∞,k

��⨿
Grn,k // Gr∞,k

one obtains the continuity of p∞,k.

(b) The actions mn,k given in (2.9.7) are compatible with the inclusions

VSn,k ⊂ VSn+1,k. Namely, the diagram

VSn,k ×Ok
� � //

mn,k

��

VSn+1,k ×Ok

mn+1,k

��
VSn,k �

� // VSn+1,k

is commutative, as one may easily verify. Define

m∞,k = colim
n→∞

mn,k : colim
n→∞

(VSn,k ×Ok) −→ VS∞,k .

As sets, there is an equality

colim
n→∞

(VSn,k ×Ok) = VS∞,k ×Ok .

Besides, both spaces have the same topology, as one sees in the commutative

diagram

(
⨿
VSn,k)×Ok

a // VS∞,k ×OkOO

��⨿
(VSn,k ×Ok) // colim(VSn,k ×Ok) ,

because a is an identification, since Ok is compact. Thus Ok acts on VS∞,k

on the right.

(c) We now prove that p∞,k is locally trivial. Let us consider inside Grn,k
the set Un,k of the planes E that are mapped onto Rn under the projection

Rk × Rn−k −→ Rk (see Figure 2.4).

One has that Un,k = Un+1,k ∩Grn,k. Un,k is open in Grn,k (cf. Milnor [11,

2.25 (a)]). Thus, U∞,k =
∪
n Un,k is open in Gr∞,k. (Analogous considerations

hold for k-planes that are mapped surjectively onto any other product of k

factors R inside Rn, and not necessarily the first k of them.) The fibration

pn,k is trivial over Un,k. Namely, we shall construct a particular trivialization

φn,k : Un,k ×Ok −→ p−1
n,kUn,k
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Rn−k

Rk

E

Figure 2.4

as follows (cf. 2.5.5). First we need a section

s : Un,k −→ p−1
n,kUn,k ,

and we define

φn,k([x1, . . . , xk], B) = (s[x1, . . . , xk])B ;

the section is obtained as follows. Each plane E ∈ Un,k is generated by

exactly a k-tuple x1(E), . . . , xk(E) of vectors of the form

x1(E) = (1, 0, . . . , 0, xk+1,1, . . . , xn,1)

x2(E) = (0, 1, . . . , 0, xk+1,2, . . . , xn,2)
...

... .

Observe that the n-tuples (0, . . . , 1, . . . , 0, xk+1,i, . . . , xn,i) are the solutions

of a system of n − k linear equations with n unknowns. They are clearly

linearly independent.

The assignment E 7→ (x1(E), . . . , xk(E)) ∈ Rnk is continuous (cf. Milnor,

op. cit). Moreover, the orthonormalization (x1(E), . . . , xk(E)) 7→ (x̃1(E), . . . , x̃k(E))

given by the Gram-Schmidt process is also continuous (namely, one can give

explicit formulas for the orthonormalized basis; cf. for instance, the formulas

given by Langwitz [?, p.74]). We thus may define

s(E) = (x̃1(E), . . . , x̃k(E)) ∈ VSn,k.

It is an easy matter to convince oneself that all maps φn,k for different values

of n are compatible and glue together to yield a map

φ∞,k : U∞,k ×Ok −→ p−1
∞,kU∞,k

and the map φ∞,k, as a colimit of homeomorphisms, is also a homeomor-

phism. Of course, it is also a principal map over the identity map of U∞,k.

Thus, p∞,k is trivial over U∞,k.
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(d) We prove that πi(VS∞,k) = 0 for every i. This follows from the next

lemma.

2.9.10 Lemma. Any compact set K ⊂ VS∞,k lies inside some VSn,k.

Before proving this lemma, we come back to statement (d) in the proof

of 2.9.9.

Let f : Si −→ VS∞,k represent any element of πi(VS∞,k). Its image f(Si)
is a compact set, and thus, by 2.9.10, it lies inside VSn,k for some n. Let n

be large enough that n − k > i. Hence, f is nullhomotopic as a map into

VSn,k, and thus also as a map into VS∞,k. This proves the statement.

Proof of 2.9.10: If the statement of the lemma were false, then there would

be a sequence p1, p2, . . . of points of K such that pn ̸∈ VSn,k for all n. But

since K is compact, the sequence {pi | i ∈ N} has an accumulation point p0.

Take any subset S ⊂ Q =
∪∞
i=0{pi}. For every n, S ∩ VSn,k consists of only

finitely many points, and therefore, it is closed in VS∞,k and also in Q. Thus,

Q is discrete, which is a contradiction of the fact that p0 is an accumulation

point of the sequence. ⊓⊔

We now pass to the last part of the proof of 2.9.9.

(e) By 2.5.8, the Definition 2.8.14, and the previous parts (a)–(d) of the

proof, we have that p∞,k is a universal principal Ok-fibration. ⊓⊔

2.9.2 The Milnor Construction

Let G be an arbitrary topological group. We want to construct a univer-

sal principal G-fibration pG : EG −→ BG. First we shall give a formal

description of pG and then we shall explain the geometrical meaning of the

construction.

2.9.11 Construction. First we describe EG as a set.

Consider sequences

(t1, v1, t2, v2, . . . , ti, vi, . . .)

such that

ti ∈ I = [0, 1] , vi ∈ G , i = 1, 2, 3, . . . ,

and ti ̸= 0 only for finitely many values of i and
∑∞

i=1 ti = 1. Two such

sequences (t1, v1, t2, v2, . . .) and (t′1, v
′
1, t

′
2, v

′
2, . . .) are equivalent if
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(a) ti = t′i for every i, and

(b) for every i, vi = v′i or ti = t′i = 0.

We denote by t1v1 + t2v2 + · · · = z the equivalence class of

(t1, v1, t2, v2, . . .) .

(We just have to be careful to respect the ordering of the terms, and of

course, write the terms with coefficient ti = 0.) Let EG be the set of all

these equivalence classes z.

We shall now furnish EG with a topology.

There are (coordinate) maps

ti : EG −→ I ,

t1v1 + t2v2 + · · · 7−→ ti ,

vi : t
−1
i (0, 1] −→ G ,

t1v1 + t2v2 + · · · 7−→ vi .

Observe that the maps ti and vi are well defined. An element of EG is

determined by its coordinates, namely, by its images under the maps ti and

vi. We endow EG with the coarsest (smallest) topology that makes all these

maps continuous. The meaning of this method of generating a topology is

explained in the next lemma, that characterizes the topology and is easy to

prove.

2.9.12 Lemma. A map f : X −→ EG is continuous if and only if the

composed maps ti ◦ f and vi ◦ (f |(ti◦f)−1(0,1]) are continuous. ⊓⊔

We now define a right action ρ : EG×G −→ EG.

This action is given by

ρ(t1v1 + t2v2 + · · · , u) = t1(v1u) + t2(v2u) + · · · .

This action ρ is continuous, as one easily proves using Lemma 2.9.12; namely,

the diagram

EG×G ρ //

proj1
��

EG

ti
��

EG
ti

// I
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commutes. Thus ti ◦ ρ = ti ◦ proj1 is continuous, and

ρ−1t−1
i (0, 1]

vi×id

��

t−1
i (0, 1]×G ρ|··· // t−1

i (0, 1]

vi
��

G×G µ
// G ,

commutes, where µ is the group multiplication. Thus vi ◦ (ρ|ρ−1t−1
i (0,1]) is

continuous.

BG is obtained from EG by passing to the orbit space under the group

action ρ, that is, taking the quotient space under the equivalence relation

a, b ∈ EG; a ∼ b⇔ ∃ u ∈ G with ρ(a, u) = b ,

(see 2.2.21).

Let pG : EG −→ BG be the quotient map. Then pG is a principal

fibration.

2.9.13 Theorem. pG is a locally trivial principal fibration. We denote by

ηG the corresponding fiber bundle.

Proof: Let us consider the sets Wi = t−1
i (0, 1] and Vi = pGWi. Wi is open

in EG by the definition of the topology in EG. Vi is open in BG, since

p−1
G (Vi) = Wi. {Vi | i = 1, 2, . . .} is an open cover of BG. We shall prove

that pG is trivial over Vi.

We define maps Φi : Vi ×G −→Wi by

Φi (pG(t1v1 + t2v2 + · · · ), u) = t1(v1v
−1
i u) + t2(v2v

−1
i u) + · · · .

We show that they are homeomorphisms.

Φi is well defined.

Namely, if pG(t1v1 + · · · ) = pG(t
′
1v

′
1 + · · · ) ∈ Vi, then one has tj = t′j, and

there exists w ∈ G such that v′j = vjw for every j such that tj ̸= 0. Thus

v′i = viw and v′jv
′−1
i u = vjww

−1v−1
i u = vjv

−1
i u for such values of j.

Φi is bijective.

Namely,

(pG, vi) : Wi = t−1
i (0, 1] −→ Vi ×G

is an inverse of Φi and is continuous.

Φi is compatible with the action of G.
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Namely,

Φi(pG(t1v1 + · · · ), u1u2) = t1(v1v
−1
i u1u2) + · · ·

= t1(v1v
−1
i u1 + · · · )u2

= Φi(pG(t1v1 + · · · ), u1)u2 .

Φi is continuous.

Namely, Φ|Vi×{e} is continuous, since

Φi(pG(a), e) = ρ(a, vi(a)
−1), a ∈ Wi ,

and since

Φi(x, u) = ρ(Φi(x, e), u),

Φi is also continuous. ⊓⊔

We still have to prove that πi(EG) = 0 for every i. Before doing it, we

explain the construction of EG.

Consider inside EG the subset

EkG = {t1v1 + · · ·+ tkvk + · · ·+ tjvj + · · · | tj = 0 if j > k} .

For example, a point t1v1+t2v2 ∈ E2G can be described by a triple (t, v1, v2),

t = t1 (1− t = t2), since t1 + t2 = 1, where the triples

(0, v1, v2) and (0, v′1, v2)

are identified, as well as are the triples

(1, v1, v2) and (0, v1, v
′
2) .

In other words, E2G, as a set, is the join G ∗G (see page 10), up to the fact

that the topology of G ∗G might be finer (larger). Analogously, one may see

that, up to topology, E3G can be considered as (G ∗G) ∗G, and so on.

2.9.14 Theorem. πi(EG) = 0 for every i ≥ 0.

Proof: Defining

sk(t1v1 + t2v2 + · · · ) =
k∑
j=1

tj ,

we have a continuous map

sk : EG −→ I .
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Take Uk = s−1
k (0, 1]. Then, Uk ⊂ Uk+1 for k ≥ 1, and

∪∞
k=1 Uk = EG, since

for every t1v1+ t2v2+ · · · ∈ EG,
∑∞

j=1 tj = 1. Because Uk is open in EG and

{Uk} is a cover of EG, each compact set in EG lies in some adequate Un.

The image of the sphere Si under a continuous map is compact and thus

lies in Un for some n. Thus, the theorem will be proved, if we prove that

every Uk is contractible in EG.

We define a homotopy h : Uk × I −→ EG by

tj ◦ h : (a, t) 7−→

{
t+(1−t)sk(a)

sk(a)
tj(a) if j ≤ k,

(1− t)tj(a) if j > k,

vj ◦ h(a, t) 7−→ vj(a) if tjh(a, t) > 0 .

One has that

∞∑
j=1

tj (h(a, t)) =
t+ (1− t)sk(a)

sk(a)
sk(a) + (1− t)(1− sk(a))

= 1 ,

so that, indeed, h(a, t) ∈ EG.

By 2.9.12, h is continuous. One has that h(a, 0) = a and h(a, 1) ∈ EkG (=

s−1
k (1)). We now attach to h another homotopy d : EkG×I −→ Ek+1G given

by

tj ◦ d : (a, t) 7−→


(1− t)tj(a) if j ≤ k,

t if j = k + 1,

0 if j ≥ k + 2;

vj ◦ d : (a, t) 7−→

{
vj(a) if j ≤ k,

e if j ≥ k + 1.

One has that d(a, 0) = a and that

d(a, 1) = 0v1(a) + 0 + · · ·+ 0vk(a) + 1e+ 0e+ 0 + · · ·
= 0e+ 0e+ · · ·+ 0e+ 1e+ 0e+ · · · ;

in other words, d contracts EkG inside Ek+1G in one point, and since h(a, 1) ∈
EkG we have the desired result. ⊓⊔

2.9.15 Remark. In fact, EG is contractible. Cf. Dold [3, §8].



116 2 Fiber Bundles

If θ : G −→ G′ is a continuous homomorphism between topological

groups, then we have a fiber map

(θ̃, θ) : pG −→ pG′

given by

θ̃(t1v1 + · · · ) = t1θ(v1) + t2θ(v2) + · · · ,
θpG(t1v1 + · · · ) = pG′(t1θ(v1) + t2θ(v2) + · · · ) .

θ is well defined.

In 2.4.10 we assigned to θ a natural transformation

θ∗ : kG −→ kG′ ,

(see 2.8.16 for the notation).

The next diagram

[A,BG]
Ω(ηG) //

θ#
��

kG(A)

θ∗
��

[A,BG′]
Ω(ηG′ )

// kG′(A) .

Let Vi ⊂ BG be the open set defined in the proof of 2.9.13, and corre-

spondingly, V ′
i ⊂ BG′. One has that θ

−1
(V −1

i ) = Vi. Let [f ] = [A,BG].

θ∗Ω(ηG)[f ] is represented by a bundle with open cover {f−1(Vi)} and coor-

dinate transformations

f−1(Vi) ∩ f−1(Vj)
f−→ Vi ∩ Vj

gij−→ G
θ−→ G′ ,

and Ω(ηG′)θ# is represented by a bundle with cover {f−1θ
−1
(V ′

i )} and coor-

dinate transformations

f−1θ
−1
(V ′

i ) ∩ f−1θ
−1
(V ′

j )
f−→ θ

−1
(V ′

1) ∩ θ
−1
(V ′

2)
θ−→ V ′

1 ∩ V ′
2

g′ij−→ G′ ,

where gij and g
′
ij are the coordinate transformations of ηG and ηG′ , respec-

tively.

Since θ
−1
(V ′

i ) = Vi, both covers coincide. It is, therefore, enough to check

that θ ◦ gij = g′ij ◦ θ. But

θgijpG(t1v1 + t2v2 + · · · ) = θ(viv
−1
j )

g′ijθpG(t1v1 + · · · ) = g′ijpG′(t1θ(v1) + t2v2 + · · · )
= θ(vi)θ(vj)

−1 .



Chapter 3

Singular Homology of Fibrations

3.1 Introduction

3.2 Spectral Sequences

3.2.1 Additive Relations

We shall introduce here the concept of the subtitle, since it is a very conve-

nient formalism for studying spectral sequences.

3.2.1 Definition. Let A and B be abelian groups (which we write addi-

tively). A relation f : A −→ B is a triple f = (A,B, F ) such that F ⊂ A×B
(cf. 2.3.23). We say that the relation f is additive if f is a subgroup of A×B.

If f is on the one hand a function of sets, and on the other, an additive re-

lation, then f is a group homomorphism.

In what follows, we shall only consider additive relations. Let f =

(A,B, F ) and g = (B,C,H) be relations. We define the composition g ◦ f as

the triple (A,C,H), where

H = {(a, c) ∈ A× C | ∃ b ∈ B with (a, b) ∈ F, (b, c) ∈ G} .

The relation g ◦ f is additive again. Abelian groups, together with additive

relations, constitute a category. Given a relation f = (A,B, F ), we define its

inverse relation by

f−1 = (B,A, F−1) , where F−1 = {(b, a) ∈ B × A | (a, b) ∈ F} .

This relation f−1 is also additive. One has the following formulas:

(g ◦ f)−1 = f−1 ◦ g−1 , (f−1)−1 = f .
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3.2.2 Exercise. Prove that given additive relations f : A −→ B and g :

B −→ C, then the relations g ◦ f : A −→ C and f−1 : B −→ A are, indeed,

additive.

3.2.3 Exercise. Prove that, indeed, the abelian groups and the additive

relations constitute a category. (Hint: Observe that for an abelian group A,

the identity relation is idA = (A,A,∆A), where ∆A = {(a, b) ∈ A×A | a = b}
is the diagonal subgroup.)

3.2.4 Note. If f = (A,B, F ) is additive, in general f−1 ◦ f ̸= idA.

3.2.5 Exercise. Give an example of an additive relation f : A −→ B such

that f−1 ◦ f ̸= idA. Analyze under what conditions one has f
−1 ◦ f = idA; in

other words, characterize the isomorphisms in the category of abelian groups

and additive relations.

Let A be an abelian group and U ⊂ A a subset, and let f = (A,B, F ) be

an additive relation. We define

f(U) = {b ∈ B | ∃ a ∈ A with (a, b) ∈ F}
= proj2((U ×B) ∩ F ) .

If U ia a subgroup of A, then f(U) is a subgroup of B. One has the following

facts:

(a) If U1 ⊂ U2, then f(U1) ⊂ f(U2).

(b) f(
∪
j∈J Uj) =

∪
j∈J f(Uj).

(c) If f is a function, then f−1(
∩
j∈J Uj) =

∩
j∈J f

−1(Uj).

3.2.6 Definition. Let f = (A,B, F ) be an additive relation. We define

the following concepts:

The image of f by Im(f) = f(A).

The indeterminacy of f by Ind(f) = f(0).

The definition domain of f by Def(f) = Im(f−1).

The kernel of f by Ker(f) = Ind(f−1).
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3.2.7 Proposition. There is a unique additive relation f that fits into the

next commutative diagram

A
f // B

����
Def(f)

?�

OO

f

//___ B/Ind(f) ,

with the following properties:

(a) f is a homomorphism.

(b) The mapping f 7→ f establishes a one-to-one correspondence between

additive relations f : A −→ B and homomorphisms from a subgroup of

A into a quotient of B.

(c) f induces canonically an isomorphism

f : Def(f)/Ker(f) −→ Im(f)/Ind(f) .

The proof is routine and we leave it to reader. ⊓⊔

3.2.2 Exact Couples and their Spectral Sequences

There are several approaches to spectral sequences. We chose here the clas-

sical one through exact couples invented by Massey [10]. Before stating the

definition, we need some previous concepts.

3.2.8 Definition. Let A = {Ap,q | (p, q) ∈ Z× Z} and C = {Cp,q | (p, q) ∈
Z× Z} be families of abelian groups. We define a homomorphism

h : A −→ C

of bidegree (r, s) as a family of homomorphisms

hp,q : Ap,q −→ Cp+r,q+s ;

we denote this fact by bideg(h) = (r, s). A and C are called bigraded groups.

The elements of Ap,q are said to have bidegree (p, q). Let k : C −→ D be

another homomorphism of bidegree (u, v). We say that a sequence

A
h−→ C

k−→ D

is exact at C if for every (p, q), the sequence

Ap,q
hp,q−→ Cp+r,q+s

kp+r,q+s−→ Dp+r+u,q+s+v

is exact at Cp+r,q+s.
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3.2.9 Definition. An exact couple is a triangle

(3.2.10)

A
i // A

j��~~
~~
~~
~~

C
k

__@@@@@@@@

of bigraded abelian groups and homomorphisms such that

bideg(i) = (1,−1) ,
bideg(j) = (0, 0) ,

bideg(k) = (−1, 0) ,

that is exact at each vertex.

A piece of the exact couple (3.2.10) looks like follows

(3.2.11)

...

i

��
Cp,q+1

k +3 Ap−1,q+1
j //

i
��

Cp−1,q+1
k // Ap−2,q+1

Ap,q
j +3

i
��

Cp,q
k +3 Ap−1,q

Ap+1,q−1

i
��

Ap+q

The double arrows show the intertwined exact sequences. Let Ap,q be the

colimit of the sequence

· · · −→ Ap−1,q+1
i−→ Ap+1,q−1

i−→ · · · .

Thus we have a system of homomorphisms

ip,q = i : Ap,q −→ An , p, q ∈ Z , n = p+ q ,

with the following properties:

(a) The diagram

Ap,q
i //

i !!C
CC

CC
CC

C
Ap+1,q−1

i{{vv
vv
vv
vv
v

An

is commutative.
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(b)
∪
p+q=nIm(i : Ap,q −→ An) = An.

(c) Ker(i : Ap,q −→ An =
∪∞
r=0Ker(ir : Ap,q −→ Ap+r,q−r), (where i

◦ = id

and ir = i ◦ ir−1, r ≥ 1).

Recall that for each sequence of (abelian) groups, there exists a colimit, and

it is unique up to isomorphism (see [1]).

3.2.12 Definition. Let G be a group and {FpG | p ∈ Z} a sequence of

subgroups such that FpG ⊂ Fp+1G; we refer to {FpG} as a filtration of the

group G.

3.2.13 Construction. In what follows, for simplicity, we shall assume that

Ap,q = 0 if p < 0 .

We have now from the relation

f = ij−1 : Cp,q
j−1

−→ Ap,q
i−→ Ap+q ,

the groups

Im(f), Ind(f), Ker(f), and Def(f) ,

(as defined in 3.2.6).

Im(f) = ij−1(Cp,q) = i(Def(j)) = i(Ap,q)

Ind(f) = ij−1(0) = i(Ker(j)) = i(i(Ap−1,q+1))

= i(Ap−1,q+1) .

By

i(Ap,q) = FpAp+q ,

and since Ind(f) ⊂ Im(f), we obtain a filtration of Ap+q, because we have

proved

(3.2.14)
Ind(f) = Fp−1Ap+q ,

Im(f) = FpAp+q .

We also have

Ker(f) = Ind
(
f−1
)
=
(
ji

−1
)
(0) = j

(
Ker

(
i
))

= j

(
∞∪
r=0

(ir)−1 (0)

)
=

∞∪
r=0

j (ir)−1 (0)(3.2.15)

=
∞∪
r=0

j (ir)−1 k (0) =
∞∪
r=0

Ind
(
j (ir)−1 k

)
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by definition of colimit (see 3.2.9). Moreover, we have

Def(f) = Im(f−1) = ji
−1 (

Ap+q
)
= j (Ap,q)

= k−1 (0) = k−1

∞∩
r=0

irj−1 (0)(3.2.16)

=
∞∩
r=0

k−1irj−1 (0) =
∞∩
r=0

Ker
(
j (ir)−1 k

)
and

∞∩
r=0

irj−1(0) =
∞∩
r=0

Ind(irj−1 : Cp−r−1,q+r −→ Ap−r−1,q+r −→ Ap−1,q)

= 0 ,

since by assumption Ap,q = 0 if p < 0. These computations can be figured

out in a diagram similar to (3.2.11).

In the expressions for Ker(f) and Def(f) the relations j(ir−1)
−1
k play a

role.

3.2.17 Definition. Take r ≥ 1, r ∈ Z, i0 = idA.

drp,q = j(ir−1)−1k : Cp,q −→ Cp−r,q+r−1 ,

Zr
p,q = Def(drp,q) ,

Br
p,q = Ind(drp+r,q−r+1) ,

Z∞
p,q =

∞∩
r=1

Zr
p,q ,

B∞
p,q =

∞∪
r=1

Br
p,q ,

Er
p,q = Zr

p,q/B
r
p,q , 1 ≤ r ≤ ∞ .

As we already did with i, j, k, occasionally we shall omit the indexes p, q, in

these objects, even though we shall not be dealing with the whole bigraded

group, but just of one member of it.

3.2.18 Proposition. The following equations hold:

Im(dr) = Ind(dr+1) ,

Ker(dr) = Def(dr+1) ,

Im(f) ⊂ Ker(dr) .
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Proof: Consider the following immediate equalities:

Im(drp,q) = j(ir−1)−1k(Cp,q)

= j(ir−1)−1j−1(0) (by the exactness)

= j(ir)−1(0)

= j(ir)−1k(0)

= Ind(dr+1
p+1,q+1) ,

Ker(dr)p,q = (j(ir−1)−1k)−1(0)

= k−1(ir−1)j−1(0)

= k−1(ir−1)i(Ap−r−1,q+r) (by the exactness)

= k−1(ir)j−1(Cp−r−1,q+r)

= (dr+1
p,q )

−1(Cp−r−1,q+r)

= Def(dr+1
p,q ) ,

Im(dr)p,q = j(ir−1)−1k(Cp,q)

⊂ j(Ap−r,q+r−1)

= k−1(0)

⊂ k−1(ir−1)j−1(0)

= Ker(drp−r,q+r−1) .

⊓⊔

Applying again the complete diagram as in (3.2.11), one can rewrite what

we just proved in the following chain of inclusions (since Ind(f) ⊂ Im(f) and

Def(f) ⊃ Ker(f)).

0 �
� // Im(d1) �

� // Im(d2) �
� // · · · � � // Ker(d2) �

� // Ker(d1) �
� // C

Ind(d1) �
� // Ind(d2) �

� // Ind(d3) �
� // · · · � � // Def(d3) �

� // Def(d2) �
� // Def(d1) .

In other words,

0 = B1 ⊂ B2 ⊂ B3 ⊂ · · · ⊂ Z3 ⊂ Z2 ⊂ Z1 = C .

In particular, one has

Br+1 = Im(dr) ⊂ Def(dr) = Zr ,

Br = Ind(dr) ⊂ Ker(dr) = Zr+1 ,
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and thus dr (cf. 3.2.7) induces the following diagram:

Def(dr) d
r

//

����

C/Ind(dr)

Er = Def(dr)/Ind(dr) d
r

//

����

Def(dr)/Ind(dr) = Er
?�

OO

Def(dr)/Ker(dr)
∼= // Im(dr)/Ind(dr)

?�

OO

Hence d
r

p,q : E
r
p,q −→ Er

p−r,q+r−1 is a homomorphism.

3.2.19 Theorem. The pair (Er, d
r
) is a chain complex and its homology

satisfies

Hp,q(E
r, d

r
) ∼= Er+1

p,q .

Proof: That d
r ◦ dr = 0 follows simply from

Im(d
r
) = Im(dr)/Ind(dr)

⊂ Ker(dr)/Ind(dr) = Ker(d
r
) .

On the other hand,

Hp,q(E
r, d

r
) = Ker(d

r

p,q)/Im(d
r

p+r,q−r+1)

∼= Ker(drp,q)/Im(drp+r,q−r+1)

= Def(dr+1
p,q )/Ind(d

r+1
p+r+1,q−r)

= Zr+1
p,q /B

r+1
p,q = Er+1

p,q .

by Definition 3.2.17 and by 3.2.18. ⊓⊔

3.2.20 Definition. A sequence (Er, d
r
) of chain complexes, together with

isomorphisms

H(Er, d
r
) ∼= Er+1

is called a spectral sequence.

3.2.21 Remark. The isomorphism 3.2.7 (c) induced by an additive relation

f

Def(f)/Ker(f) −→ Im(f)/Ind(f) ,

by using our computations in 3.2.13 and Definition 3.2.17 yield an isomor-

phism

(3.2.22) E∞
p,q
∼= FpAp+q/Fp−1Ap+q ,
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since FpAp+q/Fp−1Ap+q = Im(f)/Ind(f), as in (3.2.14), and

Def(f) =
∞∩
r=0

Ker(dr+1) = Z∞
p,q , (see (3.2.16) and 3.2.18),

Ker(f) =
∞∪
r=0

Ind(dr+1) = B∞
p,q , (see (3.2.15) and 3.2.18).

3.3 The Homology Spectral Sequence of a

Serre Fibration

3.3.1 Construction. Let π : E −→ B be a Serre fibration over a CW-

complex B. Denote by Bp the p-skeleton and by Ep its inverse image under

π, π−1(Bp), p ≥ 0. In particular, set Ep = ∅ if p < 0. We have an exact

couple (see 3.2.9).

(3.3.2)

A i // A

j~~}}
}}
}}
}}

C ,

k

``AAAAAAAA

given by the definitions

Ap,q = Hp+q(E
p) ,

Cp,q = Hp+q(E
p, Eq) ,

i : Hp+q(E
p) −→ Hp+q(E

p+1) ,

j : Hp+q(E
p) −→ Hp+q(E

p, Ep−1) ,

that are induced by the canonical inclusions, and

k : Hp+q(E
p, Ep−1) −→ Hp+q−1(E

p−1)

given by the boundary homomorphism ∂.

The bidegrees of these homomorphisms clearly are:

bideg(i) = (1,−1) ,
bideg(j) = (0, 0) ,

bideg(k) = (−1, 0) ,

as in 3.2.9.

Take

An = Hn(E) , and let i : Hn(E
p) −→ Hn(E)
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be induced by the inclusion. Then Hn(E), together with i (for every p) is a

colimit of the sequence

· · · i−→ Hn(E
p)

i−→ Hn(E
p+1)

i−→ Hn(E
p+2) −→ · · · ,

so that we have to prove the following.

Each element x ∈ Hn(E) lies inside the image of some i, and if some

element in Hn(E
p) lies inside the kernel of i, then it also lies inside the kernel

of

ir : Hn(E
p) −→ Hn(E

p+r)

for r large enough.

Let x = [z], where z ∈ Zn(E) is a cycle. The support |z| of the cycle z,

(z =
∑k

i=1 αiζi, ζi : ∆
n −→ E, |z| =

∪k
i=1 ζi(∆

n)) is compact; hence, also

π(|z|) is compact, and since B has the weak topology, there exists p such that

π(|z|) ⊂ Bp, and consecuently |z| ⊂ Ep and so x ∈ Im(Hn(E
P ) −→ Hn(E)).

Analogously, one can conclude that if a cycle has support in Ep and is a

boundary (in E); thus it is a boundary in Ep+r for some r.

Finally, one has that (cf. 3.2.13) Ap,q = 0 for p < 0.

3.3.3 Note. We shall use any abelian group as group of coefficients in ho-

mology.

3.3.4 Remark. It is important to ponder what is happening with the for-

malism of Section 3.2 in the case of E = B, π = idB. We had dr = j(ir−1)−1k.

Thus d1 = jk,

d1 : Hp+q(B
p, Bp−1)

∂−→ Hp+q−1(B
p−1) −→ Hp+q−1(B

p−1, Bp−2) .

Moreover,

Z1
p,q = Def(d1) = Hp,q(B

p, Bp−1) ,

B1
p,q = Ind(d1) = 0 .

Thus, we can identify the group E1
p,q with Hp,q(B

p, Bp−1), where d
1
corre-

sponds to d1.

On the other hand, in this case one has (see [1, 7.3.1]) that

Hp+q(B
p, Bp−1) =

{⊕
i∈Jp Z if q = 0,

0 if q ̸= 0,
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where
⊕

i∈Jp Z represents the free group generated by the p-cells of B (or,

instead of Z the coefficient group A); that is, it is the group of cellular p-

chains of B (with coefficients in A), and d1 is the usual boundary operator.

Thus we obtain that

E2
p,q
∼=

{
Hp(B) if q = 0,

0 if q ̸= 0,

Since d
r
has bidegree (−r, r − 1), one has that d

r
= 0 for r ≥ 2 and

hence we have that E2
p,q
∼= Er

p,q for all r ≥ 2. One has also, from d
r
and

3.2.18, that Def(dr+1) = Ker(dr) = Def(dr); hence Z2 = Z∞, analogously,

from Ind(dr) = Im(dr) = Ind(dr+1), we obtain B2 = B∞. It is now easy to

verify the formula (3.2.22) that ralates E∞ with the filtration of H∗(B).

We want to compute now E1, E2, and d1 for the exact couple (4.2.2). For

that, we need the following result.

3.3.5 Lemma. Let A0, A1, B0, and B1 be subspaces of B such that

A0

≃
⊂ B0

∩ ∩
A1

≃
⊂ B1

and assume that A0, resp. A1, is a strong deformation retract of B0, resp.

B1. Then the inclusion induces isomorphisms

Hn(π
−1(A1), π

−1(A0)) ∼= Hn(π
−1(B1), π

−1(B0)) ;

besides,

Hn(π
−1(Bν), π

−1(Aν)) = 0, ν = 0, 1 .

To be able to prove this lemma, we need another one.

3.3.6 Lemma. Let π : X −→ Y be a Serre fibration. If A ⊂ B is a strong

deformation retract of B, then S(π−1(A)) a chain deformation retract of

S(E), where S denotes the corresponding singular complex.

Proof: Since A is a strong deformation retract of B, there is a map

φ : B × I −→ B

with the following properties:

φ(b, 0) = b if b ∈ B,
φ(b, 1) ∈ A if b ∈ B,
φ(a, t) = a if a ∈ A.
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We now proceed in steps.

(a) Let γn(E) be the set of singular n-simplexes. We want to assign to each

σ ∈ γn(E) a map

σ̂ : ∆n × I −→ E , (σ̂(x, t) = σ̂t(x)) ,

with the following properties:

(i) ∂i(σ̂t) = (∂̂iσ)t.

(ii) σ̂0 = σ.

(iii) σ̂t(x) = σ(x) for all t ∈ I, if σ ∈ γn(π−1(A)).

(iv) πσ̂t(x) = φ(πσ(x), t).

From (iv) one has also that σ̂1(x) ∈ π−1(A), that is, σ̂1 ∈ S(π−1(A)).

With respect to the notation, we have that σ̂t is a singular simplex of

γn(E). Let ∂iσ be the i-face of σ. If we denote by εi : ∆n−1 −→ ∆n the

canonical inclusion into the i-face, then ∂iσ = σ ◦ εi.

(b) We now construct σ̂ by induction on n. Consider the problem

(3.3.7)

∆n × {0} ∪ εi(∆n−1)× I
h0 //

� _

��

E

π

��
∆n × I h

//

σ̂

66llllllll
B

where

h(x, t) = φ(πσ(x), t) (guaranteed by (iv)),

h0(x, 0) = σ(x) (guaranteed by (ii)),

h0(εi(y), t) = (∂̂iσ)(y, t) (guaranteed by (i)).

(∂̂iσ) has already been constructed, by the induction hypothesis. h0 is well

defined:

h0(εi(y), 0) = (∂̂iσ)(y, 0) ,

= ∂iσ(y) (by the induction hypothesis (ii))

= σ(εi(y)) (by the definition of ∂iσ)

= h0(εi(y), 0) .
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Diagram (3.3.7) is commutative:

πh0(x, 0) = πσ(x) πh0(εi(y), t) = π(∂̂iσ)(y, t)

= φ(πσ(x), 0) = φ(π∂iσ(y), t)

= h(x, 0) ; = φ(πσ(εi(y), t)

= h(εi(y), t) .

Since π is a Serre fibration, the problem has a solution and we obtain σ̂ that

fulfills (a), (i) - (iv).

(c) For every topological space W there is a chain homotopy that is natural

in W

F : Sn(W ) −→ Sn+1(W × I)

with the property

∂F + F∂ = j1# − j0# ,

where jν : W −→ W × I is given by jν(w) = (w, ν), ν = 0, 1 (cf. [9, II.8]).

In particular, the diagram

Sq(∆n−1)
F //

(εi)#
��

Sq+1(∆n−1 × I)
(εi×id)#
��

Sq(∆n) F
// Sq+1(∆n × I)

is commutative.

(d) We define homomorphisms

r : Sn(B) −→ Sn(π
−1(A)) ,

h : Sn(B) −→ Sn+1(B) ,

by

r(σ) = σ̂1 , h(σ) = σ̂#F (ιn) (ιn = id∆n) ,

if σ is an n-simplex, and then by extending linearly.

Statement: r is a chain transformation, r(σ) = σ if σ ∈ Sn(π−1(A)), and

h is a chain homotopy such that

(∂h+ h∂)σ = rσ − σ , σ ∈ Sn(B) .
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Proof: It is a chain transformation:

∂r(σ) = ∂(σ̂1)

=
n∑
i=0

(−1)i∂i(σ̂1)

=
n∑
i=0

(−1)i(̂∂iσ)1

=
n∑
i=0

(−1)ir(∂iσ)

= r∂(σ) .

By (a) (iii), r(σ) = σ̂1 = σ if σ ∈ Sn(π−1(A)). Thus

∂h(σ) = ∂σ̂#F (ιn)

= σ̂#∂F (in) ,

h∂(σ) = h(
∑

(−1)i∂iσ)

=
∑

(−1)i(̂∂iσ)#F (ιn−1)

=
∑

(−1)iσ̂#(εi × id)#F (in−1) (since by (a) (i) ∂̂iσ = σ̂(εi × id))

=
∑

(−1)iσ̂#Fεi#(ιn−1) (by (c))

= σ̂#F∂(ιn) (since ∂i(ιn) = εi#ιn−1).

Summarizing:

∂h(σ) + h∂(σ) = σ̂#(∂F + F∂) (ιn)

= σ̂#(j
1
# − j0#)(ιn)

= σ̂1 − σ̂0
= r(σ)− σ .

⊓⊔

Proof of 3.3.5: By 3.3.6, we have

Hn(π
−1(Aν))

∼=−→ Hn(π
−1(Bν)) , ν = 0, 1 .

The long homology exact sequences of the pairs

(π−1(A1), π
−1(A0)) and (π−1(B1), π

−1(B0))

fit together as follows.

· · · // Hn+1(π
−1(A0))

∂ //

∼=��

Hn(π
−1(A1), π

−1(A0)) //

∼=��

Hn(π
−1(A1)) //

∼=��

· · ·

· · · // Hn+1(π
−1(B0))

∂ // Hn(π
−1(B1), π

−1(A0)) // Hn(π
−1(B1)) // · · · .
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Moreover, for the pair (π−1(Bν), π
−1(Aν)) we have

Hn+1(π
−1(Aν))

∼=−→

Hn+1(π
−1(Bν))

∂=0 // Hn(π
−1(Bν), π

−1(Aν))
0 // Hn(π

−1(Aν)) // Hn(π
−1(Bν))

0 ,

⊓⊔

3.3.1 Computation of the E1-term of the Spectral Se-
quence

Let π : E −→ B be a Serre fibration over the simplicial complex B; let spj ,

j ∈ Jp, be the closed p-simlpexes of B, epj the open p-simplex of spj , m
p
j the

baricenter and ṡpj the boundary of spj . Consider the diagram

(3.3.8)

Hn(π
−1(Bp), π−1(Bp−1))

(2)

��

⊕j∈JpHn(π
−1(spj), π

−1(ṡp−1
j ))

(1)oo

(3)

��
Hn(π

−1(Bp), π−1(Bp − ∪{mp
j})) ⊕Hn(π

−1(spj), π
−1(spj −m

p
j))

(4)oo

Hn(∪π−1(epj),∪π−1(epj −m
p
j))

(5)

OO

Hn(π
−1(epj), π

−1(epj −m
p
j)) .

(6)

OO

(7)
oo

All homomorphisms in this diagram are induced by inclusions. For instance,

(7) is an isomorphism in singular homology. By excision, (5) and (6) are

isomorphisms too, thus also (4) is an isomorphism. Finally, (2) and (3) are

isomorphisms by 3.3.5; hence also (1) is an isomorphism.

3.3.9 Remark. As in 3.3.4, we can identify Hn(π
−1(Bp), π−1(Bp−1)) with

E1
p,n−p. By isomorphism (1) in Diagram (3.3.1), we have already reduced the

groups

Hn(π
−1(spj), π

−1(ṡpj)) ,

and now we are going to examine them.

For a p-simplex sp of B, let ∂is
p be the i-face, τis

p =
∪
j ̸=i ∂js

p the union

of the remaining faces, and ρis
p = ∂0 · · · ∂̂i · · · ∂psp 1 the ith vertex of sp. (See

Figure 3.1)

1 ̂ means that the corresponding symbol is omitted.
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∂0∂1∂3s
4

∂3s
4

∂1∂3s
4

1

2

3

Figure 3.1

We adopt the abbreviation

hn(A,A
′) = Hn(π

−1(A), π−1(A′))

and consider the diagram

(3.3.9)

hn(s
p, ṡp) ∂

∼=
//

αpi
���
�
�

hn−1(ṡ
p, τis

p)

hn−1(∂is
p, (∂is

p)·)
(2)

∼= // hn−1(ṡ
p − ρisp, τisp − ρisp)

∼= (1)

OO

The subspace τis
p is a strong deformation retract of sp, thus by 3.3.5,

hn(s
p, τis

p) = 0 ,

and from the long homology exact sequence of the triple

(π−1(sp), π−1(ṡp), π−1(τis
p))

one obtains that ∂ in (3.3.9) is an isomorphism. (1) is an isomorphism by

excision, and (2) is an isomorphism by 3.3.5. Define αpi by the commutativity

of the diagram, and take

β̃p = α1
0 · · ·α

p−1
0 αp0 : hn(s

p, ṡp)
∼=−→ hn−p(ρps

p) .

Figures 3.2 and 3.3 show the geometry of these considerations.

3.3.2 Translation of the Homology of the Fiber

3.3.10 Lemma. Let π : E −→ B be a Serre fibration and f : B′ −→ B a

continuous map. Then the induced fibration f ∗π is also a Serre fibration.

The proof is an exercise. ⊓⊔
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sp

i
τ1s

p

Figure 3.2

sp − ρis
p

ṡp

ρis
p

∂1s
p

Figure 3.3

Let ω : I −→ B be a path. Consider the fibration π̃ induced by π through

ω.

E ′ ω̃ //

π̃
��

E

π

��
I ω

// B .

The map ω̃ induces a homeomorphism π̃−1(t) ≈ π−1(ω(t)) with whose help

we identify Hn(π
−1(ω(t))) and Hn(π̃

−1(t)).

3.3.11 Definition. Let ω : I −→ B be a path. The translation of the

homology of the fiber along ω is the homomorphism

ω⋆ : Hn(π
−1(ω(0))) ∼= Hn(π

−1(0))
(1)−→ Hn(E

′)←−
(2)←− Hn(π̃

−1(1)) ∼= Hn(π
−1(ω(1))) .

The homomorphisms (1) and (2) induced by the inclusion are isomor-

phisms by 3.3.10 and 3.3.5.
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3.3.12 Theorem. The translation of the homology of the fiber has the fol-

lowing properties:

(a) ω⋆ = id if ω is constant.

(b) (ω1ω2)⋆ = ω2⋆ ◦ ω1⋆.

(c) ω0 ≃ ω1rel(İ)⇒ ω0⋆ = ω1⋆.

In other words, the translation of the homology of the fiber is a functor from

the fundamental grupoid of B into the category of abelian groups (and iso-

morphisms).

Proof: (a) In this case, (1) = (2).

(b) Let π1 2 : E1 2 −→ I be the fibration induced through ω1ω2 and take

the paths

h1 : I −→ I h2 : I −→ I

t 7−→
(
1

2

)
t , t 7−→ 1

2
+

(
1

2

)
t ,

and the fibrations induced through them

Ei
hi //

πi
��

E1 2

��
I

hi

// I ,

then the fibration πi is induced by π through ωi = (ω1ω2)hi. The following

diagram commutes.

Hn(π
−1(ω1ω2(0))) //

(ω1ω2)⋆
--

Hn(E1 2) Hn(π
−1(ω1ω2(1)))oo

Hn(π
−1(ω1(0))) //

ω1⋆ ''OO
OOO

OOO
OOO

Hn(E1)

h1⋆
::uuuuuuuuu

Hn(E2)

h2⋆
ddIIIIIIIII

Hn(π
−1(ω2(1)))oo

Hn(π
−1(ω1(1)))

OO

Hn(π
−1(ω2(0)))

OO

ω2⋆

77ooooooooooo

The homomorphisms h1⋆ y h2⋆ are bijective by 3.3.5, thus the diagram con-

sists of nothing else but isomorphisms. Hence, we obtain the assertion.

(c) Let h : I × I −→ B be such that h(s, 0) = ω0(s), h(s, 1) = ω1(s),

h(0, t) = ω0(0) = ω1(0), h(1, t) = ω0(1) = ω1(1). Let π̃ : G −→ I × I
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be induced by π through h, and let k0 : E0 −→ G be given by k0(s, x) =

((s, 0), x) (it lands in G!). From the commutative diagram

Hn(π
−1(ω0(0))) //

���
�
�

Hn(E0)

k0∗
3.3.6∼=

��

Hn(π
−1(ω0(1)))oo

���
�
�

Hn(π
−1({(0, 0)})) //___ Hn(G) oo //___ Hn(π

−1({(1, 0)}))

that consists only of isomorphisms, one has that ω0∗ can be defined through

the dotted arrows. Analogously we may conclude for ω1, and thus the ho-

motopy between

π−1(ω0(0)) −→ π−1(0, 0) −→ G and π−1(ω1(0)) −→ π−1(0, 1) −→ G

grants us the assertion. ⊓⊔

3.3.13 Definition. The fibration π is said to be orientable if ω⋆ depends

only on the end points of ω.

3.3.14 Exercise. Prove that if π fulfills the assumptions of 1.5.9 on the

translation of the fiber, then (φω)∗ = ω⋆.

By the considerations made in 3.3.2, we may come back to the computa-

tion of the E1-term of the spectral sequence.

Assume that B is path connected and take b0 ∈ B and F = π−1(b0). For

each point of the form ρps
p we choose a path ω from ρps

p to b0 and together

with the isomorphism β̃p from 3.3.9, we obtain the isomorphism

(3.3.15) βp = ω⋆ ◦ α1
0 ◦ . . . ◦ α

p
0 : Hn(π

−1(sp), π−1(ṡp)) −→ Hn−p(F ) .

Take f pj : (π−1(spj), π
−1(ṡpj)) ↪→ (π−1(Bp), π−1(Bp−1)). Together with 3.3.1,

by defining

γ(
∑
j

ajs
p
j) =

∑
j

(fpj∗)(βp)
−1(aj)

we obtain an isomorphism

(3.3.16) γ : Cp(B;Hn−p(F )) −→ Hn(π
−1(Bp), π−1(Bp−1)) .

We write an element of the group Cp(B,Hn−p(F )) of simplicial chains of B

with coefficients in Hn−p(F ) as a linear combination
∑

j ajs
p
j (with a finite

number of coefficients different from zero and aj ∈ Hn−p(F )). In β
p we omit

the index j. We have proved the following result.

3.3.17 Theorem. For a Serre fibration π : E −→ B on a path-connected

simplicial complex B, one has

E1
p,q = C1

p,q = Hp+q(π
−1(Bp), π−1(Bp−1)) ∼= Cp(B;Hq(F )) ,

where the isomorphism is given by γ. ⊓⊔
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3.3.3 Computation of the E2-term of the Spectral Se-
quence

We define in {Cp(B;Hq(F )) | p ∈ Z} a boundary operator ∂ by γ∂ = d1γ.

We now want to determine ∂. First we decompose hn(B
p, Bp−1) in a direct

sum analogous to (3.3.1). In the diagram

hn(s
p
j , ṡ

p
j)

(1) //

fpj∗

{{ww
ww
ww
ww hpj∗

$$II
III

III
I

hn(s
p
j , s

p
j −m

p
j)

(2)

&&NN
NNN

NNN
NNN

hn(B
p, Bp−1)

gpj∗

// hn(B
p, Bp − epj) (3)

// hn(B
p, Bp −mp

j)

all homomorphisms are induced by inclusions. (1) and (3) are isomorphisms

by 3.3.5, (2) is one by excision, and thus hpj∗ is also one, and we obtain

gpk∗f
p
j∗ =

{
0 if k ̸= j,

hpj∗ if k = j,

(the second is an isomorphism). Thus the homomorphisms gpk∗ determine

hn(B
p, Bp−1) as a direct sum; that is, we can give (uniquely) an element in

hn(B
p, Bp−1) by its images under the homomorphisms gpj∗.

Take ∂(aspj) =
∑

k∈Jp−1
aks

p−1
k . We have to compute the coefficients ak.

From the definition of ∂ we have that∑
k

fp−1
k∗ (βp−1)−1(ak) = γ∂(aspj)

and thus, applying gp−1
l∗ , we have

hp−1
l∗ (βp−1) (al) = gp−1

l∗ (
∑

f p−1
k∗ (βp−1)−1 (ak))

= gp−1
l∗ γ∂(aspj)(3.3.17)

= gp−1
l∗ d1fpj∗(β

p)−1 (a).

The following is a commutative diagram.

hn(s
p
j , ṡ

p
j)

αpi //

fpj∗

��

∂

%%KK
KKK

K
hn−1(s

p−1
l , ṡp−1

l )

(2)uukkkk
kkkk

kk

��

hn−1(ṡ
p
j)

��

// hn−1(ṡ
p
j , τis

p
j)

(1)

##G
GG

GG
GG

GG
GG

GG
GG

G

hn−1(B
p−1)

''OO
OOO

OO

hn(B
p, Bp−1)

d1
//

∂
99rrrrrr

hn−1(B
p−1, Bp−2)

gp−1
l∗

// hn−1(B
p−1, Bp−1 − ep−1

l ) ,
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where αpi is as in 3.3.9, and this, as well as (2), are considered only when

sp−1
l = ∂is

p
j . All other homomorphisms are induced by inclusions or are

connecting homomorphisms of the corresponding homology sequence.

From this we have that, if sp−1
l is not a face of spj (see figure 3.4), then ṡ

p
j

lies in Bp−1−ep−1
l ; hence (1) is the trivial homomorphism and so gp−1

l∗ d1f pj∗ =

0, and by the computation 3.3.17, we have al = 0, because hp−1
l∗ as well as

βp−1 are isomorphisms.

sp−1
l

spj

Figure 3.4

Let sp−1
l = ∂is

p
j , be the i-face of spj . Thus

hp−1
l∗ αpi (β

p)−1 (a) = gp−1
l∗ d1fpj∗(β

p)−1 (a)

= hp−1
l∗ (βp−1)−1(al);

hence, al = βp−1α
p
i (βp)

−1 (a) = ξpi (a), and

∂(asp) =

p∑
i=0

ξpi (a)(∂is
p) ,

where ξpi is an automorphism of Hq(F )).

Now we determine the automorphism ξpi , and for that we suppose again

that the fibration π : E −→ B is orientable (3.3.13).

First, by the definition of βp (3.3.15), we have that βp−1αp0 = βp, that is,
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ξp0 = id. We shall analyze now ξ11 = β0α1
1(β

1)−1 in the diagram

hq(ṡ
1, τ0s

1) hq(∂0s
1)oo ω⋆ //

s1∗

��

f

%%KK
KKK

KKK
KK

hq(b0)

hq+1(s
1, ṡ1)

∼=
77ooooooooooo

''OO
OOO

OOO
OOO

β1

##
α1
0

**

β0

;;
α1
1

44

hq(s
1)

hq(ṡ
1, τ1s

1) hq(∂1s
1)oo

g

99ssssssssss

ω′
⋆

// hq(b0) .

We have considered s1 as a path from ∂0s
1 to ∂1s

1, and s1⋆ is the translation

along s1 (see 3.3.2).

We shall prove that f ◦ α1
0 = −g ◦ α1

1. Namely, if z is a (q + 1)-cycle of

π−1s1 modulo π−1ṡ1, then ∂z decomposes as the sum z0 + z1 of two q-cycles

such that the support of zi lies in π
−1∂is

1. fα1
0(z) is thus represented by z0

and gα1
1(z) by z1. Hence one has

(gα1
1 + fα1

0)[z] = [z0 + z1] = [∂z] = 0 .

And so,

ξ11 = β0α1
1(β

1)−1

= β0α1
1(fα

1
0)

−1fω−1
∗

= −β0α1
1(gα

1
1)

−1fω−1
∗

= −β0s1∗ω
1
∗

= −id (by the orientability).

Now, by induction on p, we prove

ξpi = (−1)iid .

Before passing to the inductive proof we recall the following facts about
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boundary operators applied to sp.

sp = [0, . . . , p]

∂is
p = [0, . . . , î, . . . , p]

∂0∂is
p = [1, . . . , î, . . . , p]

∂0s
p = [1, . . . , p]

= [0′, . . . , (p− 1)′]

∂i−1∂0s
p = [1, . . . , î, . . . , p]

= ∂0∂is
p

Now we pass to the proof. For p = 1 it has been already proved above.

Take p > 1. ∂ is a boundary operator. Consider

0 = ∂∂(asp) =

p∑
i=0

p−1∑
j=0

ξp−1
j ξpi (a)(∂j∂is

p)

The fact that ξp0 = id has been already proved. For i ≥ 1 one has

∂0∂1s
p = ∂i−1∂0s

p ̸= ∂j∂ks
p if (j, k) ̸= (0, i), (i− 1, 0) .

The double sum can be zero only if

ξpi = ξp−1
0 ξpi = −ξ

p−1
i−1 ξ

p
0 = −ξp−1

i−1 ,

and by the induction hypothesis, we obtain from this the assertion. Thus we

have proved that

∂(asp) =

p∑
i=0

(−1)ia(∂isp) ;

that is, that ∂ is the ordinary boundary homomorphism. In other words, this

states that γ (3.3.16) is a chain isomorphism. Hence we have the following

theorem, known as the Leray–Serre theorem.

3.3.18 Theorem. Let π : E −→ B be a homologically simple (orientable)

Serre fibration over a CW-complex B. Then (E1
∗,q, d

1
) is, through γ (3.3.16),

isomorphic as a chain complex to (C∗(B;Hq(F )), 0). Therefore, γ induces

an isomorphism

E2
pq
∼= Hp(B;Hq(F )) . ⊓⊔

The spectral sequence Er
p q is known as the Leray–Serre spectral sequence

of the Serre-fibration π : E −→ B.
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3.3.4 Computation of the Er-Terms for Large r

By the last theorem, we have that E1
pq
∼= Cp(B;Hq(F )) = 0 for p < 0 or q < 0.

We say that the spectral sequence is concentrated in the first quadrant, and

hence,

Er
p,q = 0 if p < 0 or q < 0 , r ≥ 1 .

If we consider the differential

d
r
: Er

p,q −→ Er
p−r,q+r−1

the group on the right-hand side is zero for r > p and thus the differential

d
r
is also zero. From the diagram that defines d

r
in 3.2.17, we obtain that

d
r
= 0 is equivalent to

Ker(dr)p,q = Def(dr)p,q .

Correspondingly, we have that for the differential

d
r
: Er

p+r,q−r+1 −→ Er
p,q

the group on the left-hand side is zero for r > q + 1 and thus

Ind(dr)p,q = Im(dr)p,q .

From these two equalities, together the chains of inclusions in 3.2.17 and

Definition 3.2.12, we have

Cp,q = Z1
p,q ⊃ Z2

p,q ⊃ · · · ⊃ Zp+1
p,q = Zp+2

p,q = · · ·
0 = B1

p,q ⊂ B2
p,q ⊂ · · · ⊂ Bq+2

p,q = Bq+3
p,q = · · ·

Z∞
p,q =

∩
r

Zr
p,q = Zp+1

p,q = Zr
p,q if r > p

B∞
p,q =

∪
r

Br
p,q = Bq+2

p,q = Br
p,q if r > q + 1

E∞
p,q = Z∞

p,q/B
∞
p,q = Er

p,q if r > max{p, q + 1} .

We recall again that Hn(E) is filtered by the groups

FpHn(E) = Im(Hn(π
−1(Bp)) −→ Hn(E))

(see 3.3.1). We thus have

0 = F−1Hn(E) ⊂ F0Hn(E) ⊂ · · · ⊂ FnHn(E) = Hn(E) ,

where

FpHn(E)/Fp−1Hn(E) = E∞
p,n−p = Er

p,n−p

for r large enough. In particular, we have Er
p,n−p = 0 for p > n, so that,

indeed, one has the mentioned filtration as indicated.
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3.4 Applications

3.4.1 General Assumptions. In this section we shall always assume that

π : E −→ B is a homologically simple (orientable) Serre fibration over a

path-connected CW-complex B.

We shall apply the results of Section 3.3.

3.4.1 Spherical Fibrations

We analyze here Serre fibrations with a sphere as fiber.

Assume that π : E −→ B satisfies the general assumptions 3.4.1, and

that

F = π−1(b0) ≈ Sm−1 , m ≥ 2 , (b0 ∈ B) .

Then

E2
p,q
∼= Hp(B;Hq(F )) = 0 if q ̸= 0,m− 1 .

Hence, for these values of q, Er
p,q = 0, r ≥ 2, and moreover,

E2
p,0 = E2

p,m−1 = Hp(B;G)

if G(∼= H0(Sm−1) = Hm−1(Sm−1)) is the coefficient group of the homology.

We have that

d
r
: Er

p,q −→ Er
p−r,q+r−1

is nonzero, at most in case that

d
m
: Em

p,0 −→ Em
p−m,m−1 ;

otherwise, the domain or codomain would be the trivial groups. Thus we

have

E2 = E3 = · · · = Em ,

Em+1 = Em+2 = · · · = E∞ .

From 3.2.18, we have the following exact sequence

0 // Hp,0(E
m, d

m
) // Em

p,0
d
m

// Em
p−m,m−1

// Hp−m,m−1(E
m, d

m
) // 0

Em+1
p,0 E2

p,0 E2
p−m,m−1 Em+1

p−m,m−1

E∞
p,0 Hp(B;G) Hp−m(B;G) E∞

p−m,m−1 .
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If we now consider the filtered homology of the total space E (see Subsection

3.3.4)

0 ⊂ F0Hn(E) ⊂ F1Hn(E) ⊂ · · · ⊂ FnHn(E) = Hn(E) ,

and since

FpHn(E)/Fp−1Hn(E) = E∞
p,n−p = 0 if n− p ̸= 0,m− 1 ,

i.e., p ̸= n, n−m+ 1, this filtration looks as follows:

0 = · · · = Fn−mHn(E) ⊂ Fn−m+1Hn(E) = · · · = Fn−1Hn(E) ⊂ Hn(E) .

Thus we have the exact sequence

0 // Fn−1(Hn(E)) // Hn(E) // Hn(E)/Fn−1Hn(E) // 0

Fn−m+1Hn(E)/Fn−mHn(E) E∞
n,0

E∞
n−m+1,m−1 .

Glueing together both exact sequences, we obtain

· · · // Hp(E)

���Z
�Z
�Z
�Z
�Z

//___ Hp(B) // Hp−m(B)

!!

//______ Hp−1(E) // · · ·

E∞
p−m+1,m−1

>>
>~

>~
>~

>~
>~

>~

E∞
p,0

DD

���Z
�Z
�Z
�Z
�Z

E∞
p−m,m−1

>>
>~

>~
>~

>~
>~

>~

!!
0

@@
@�
@�
@�
@�
@�

0

DD

0 0

==
=}

=}
=}

=}
=}

=}

0 .

The arrows //___ are so that the triangles commute; the arrows ///o/o/o

indicate the first of the exact sequences and the arrows // indicate the

second. Then, it is an easy matter to check the exactness of the top horizontal

sequence.

3.4.2 Theorem. Under the general assumptions 3.4.1 on π : E −→ B,

there is an exact sequence

· · · −→ Hp(E)
π∗−→ Hp(B) −→ Hp−m(E) −→ Hp−1(E)

π∗−→ · · · ,

that is known as the Gysin sequence.

Proof: After all done in 3.4.1, it is enough to check that the homomorphism

Hp(E) −→ E∞
p,0 −→ Hp(B)



3.4 Applications 143

is indeed induced by π.

Let us consider the commutative square

E
π //

π

��

B

id
��

B
id

// B

as a fiber map from π to idB. If we denote with a tilde the spectral sequence

associated to the fibration idB (cf. 3.3.4), by the naturality of the spectral

sequence, we have the following commutative diagram:

Hp(E) //

∼=
��

E∞
p,0

� � //

��

E2
p,0

∼= //

��

Hp(B;H0(F ))

π∗
0

��
Hp(B) // Ẽ∞

p,0 Ẽ2
p,0

∼= // Hp(B;G) ,

where (π0)∗ is induced by the homomorphism H0(F ) −→ H0(b0) = G an can

be considered as the identity, since F ≈ Sm−1 is connected. Therefore, it

remains to convince oneself that bottom line in the diagram is the identity

of Hp(B) = Hp(B;G), which follows immediately from the definitions. ⊓⊔

We now consider the special case E ≈ Sl−1. We assume moreover that

Hp(B) = 0 for p > r > 0 and Hr(B) ̸= 0. From the exactness of

0 = Hr+m(B) −→ Hr(B)
∼=−→ Hr+m−1(E) −→ Hr+m−1(B) = 0

it follows that the homomorphism in the middle is an isomorphism; but from

Hr(B) ̸= 0 and E ≈ Sl−1 one has that r +m = l. From the Gysin sequence

for 1 < p < l − 1 one obtains also that

Hp(B) ∼= Hp−m(B) .

If p−m > 1 we may continue lowering the dimensions. There are two possible

cases; namely, if m divides p we finish with H0(B) ∼= G.

On the other hand, we reach Hq(B) with 0 < q < m. From the exactness

of

0 = Hq(E) −→ Hq(B) −→ Hq−m(B) = 0

one obtains that Hq(B) = 0. (Observe that q < m = l − r ≤ l − 1 if r ≥ 1;

for r = 0 we have in any case that Hq(B) = 0 for q > 0). Thus we have the

following.
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3.4.3 Theorem. Let π : Sl−1 −→ B be a fibration that satisfies the general

assumptions 3.4.1, with fiber Sm−1 (m ≥ 2), and Hp(B) = 0 if p is large

enough (for instance, if B is a finite-dimensional CW-complex). Then l =

(s+ 1)m for some s ∈ Z and

Hp(B) =

{
G if p = 0,m, 2m, . . . , sm,

0 otherwise.
⊓⊔

As a special case we we can compute the homology of the complex and

quaternionic projective spaces. Namely, since we have fibrations

S1 ↪→ S2n+1 −→ CPn ,

S3 ↪→ S4n+3 −→ HPn ,

we conclude the following.

3.4.4 Corollary.

Hp(CPn) =

{
G if p = 0, 2, 4, . . . , 2n,

0 otherwise.

Hp(HPn) =

{
G if p = 0, 4, 8, . . . , 4n,

0 otherwise.
⊓⊔

3.4.5 Remark. For RPn the problem is that the corresponding fibration

S0 ↪→ Sn −→ RPn

has disconnected fiber. See [1] for the corresponding computation.

3.4.2 Fibrations with Spherical Base Space

We shall now study fibrations of the form π : E −→ Sm, m ≥ 2.

One has

E2
p,q
∼= Hp(Sm;Hq(F )) ∼=

{
Hq(F ) if p = 0,m,

0 otherwise.

Therefore, again all terms Er
p,q = 0 for p ̸= 0, m and r ≥ 2 and the

differentials can only be nonzero in the case

d
m
: Em

m,q −→ Em
0,q+m−1 ,
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p

d
m

Figure 3.5

as shown in Figure 3.5.

So again we have

E2 = E3 = · · · = Em

Em+1 = Em+2 = · · · = E∞ .

Moreover, the following sequence is exact:

0 // Hp,q(E
m, d

m
) // Em

m,q
d
m

// Em
0,q+m−1

// H0,q+m−1(E
m, d

m
) // 0

Em+1
m,q E2

m,q E2
0,q+m−1 Em+1

0,q+m−1

E∞
m,q Hq(F ) Hq+m−1(F ) E∞

0,q+m−1 .

On the other hand, from FpHn(E)/Fp−1Hn(E) ∼= E∞
p,n−p = 0 for p ̸= 0,m

one has that the filtration “collapses” as follows:

0 ⊂ F0Hn(E) = Fm−1Hn(E) ⊂ FmHn(E) = · · · = FnHn(E) = Hn(E) ,

and from there, we obtain the exact sequence

0 // Fm−1(Hn(E)) // Hn(E) // Hn(E)/Fm−1Hn(E) // 0

E∞
0,n E∞

m,n−m

Analogously to 3.4.1 we glue both sequences together to obtain

· · · // Hq+m(E)

��
�]
�]
�]
�]
�]

//____ Hq(F )
d
m

// Hq+m−1(F )

!!

//______ Hq+m−1(E) // · · ·

E∞
m,q

DD

���[
�[
�[
�[
�[

E∞
0,q+m−1

==
=}

=}
=}

=}
=}

=}

""
0

AA

0 0

<<
<|

<|
<|

<|
<|

<|

0 .
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3.4.6 Theorem. Under the general assumptions 3.4.1 on π : E −→ Sm,
there is an exact sequence

· · · −→ Hq+m(E) −→ Hq(F ) −→ Hq+m−1(F )
i∗−→ Hq+m−1(E) −→ · · · ,

where i : F ↪→ E is the inclusion of the fiber in the total space. This sequence

is known as the Wang sequence.

Proof: After all done above, it is enough to check that the homomorphism

Hq+m−1(F ) −→ E∞
0,q+m−1 −→ Hq+m−1(E)

is indeed induced by i. Let {b0} ⊂ B be a 0-simplex and consider

F
i //

π′

��

E

π

��
{b0} �

� // B

as a fiber map from π′ to π. If we denote with a tilde the spectral sequence

of π′ we have, by the naturality, the commutative diagram

Hr(F )
∼= // H0({b0};Hr(F ))

∼= // Ẽ2
0,r

��

Ẽ∞
0,r

//

��

Hr(F )

i∗

��
Hr(F ) // H0(Y ;Hr(F ))

∼= // E2
0,r

// E∞
0,r

// Hr(E)

Hr(F ) // Em
0,r

// Em+1
0,r

// Hr(E) .

From it, it is easy to convince oneself that the top row yields the identity. ⊓⊔

3.4.7 Example. Let E be the path space in Sm that start in b0 ∈ Sm. π :

E −→ Sm maps each path to its end point. This is the so-called path fibration

and can be proved to be a Hurewicz fibration with fiber π−1(b0) = ΩSm, the
loop space of Sm (cf. 1.4.18 or [1, 3.3.17] and see Figure 3.6).

It is easy to prove that E is contractible. Thus Hn(E) = 0 for n > 0.

The Wang sequence yields (for m ≥ 2)

Hq(ΩSm;G) =

{
G if q ∼ 0 mod (m− 1),

0 otherwise.
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Figure 3.6

3.4.8 Example. Let π : Sm −→ Sk be a homologically trivial Serre fibration

with fiber Sn, k ≥ 1, n ≥ 1. The Gysin sequence with coefficients in Z and

p = k + n+ 1 looks as follows

· · · // Hk+n+1(Sk) // Hk(Sk) // Hk+n(Sm) // · · · ,

0

thus Hk+n(Sm) ̸= 0; therefore,

(3.4.9) k + n = m.

On the other hand, the Wang sequence for q = n− k + 1 looks as follows

· · · // Hn−k+1(Sn) // Hn(Sn) // Hn(Sm) // · · · .

0

Thus Hn−k+1(Sn) ̸= 0; therefore,

(3.4.10) n− k + 1 = 0 ;

from (3.4.9) and (3.4.10) it follows that n = k − 1 and m = 2k − 1.

For k = 2, 4, 8 we have fibrations

S1 −→ S3 −→ S2 ,

S3 −→ S7 −→ S4 ,

S7 −→ S15 −→ S8 ,

known as Hopf fibrations (see [5, 6]).
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3.4.3 Fibrations in Small Dimensions

3.4.11 General Assumptions. Besides the general assumptions of 3.4.1

(π is a homologically simple Serre fibration over a CW-complex) we shall

assume that π : E −→ B satisfies

Hp(B;Z) = 0 if 0 < p < r,

Hq(F ;Z) = 0 if 0 < q < s.

By the universal coefficients formula (see [1, 7.4.8]) we have

E2
p,q
∼= Hp(B;Hq(F ;G))

∼= Hp(B;Z)⊗Hq(F ;G)⊕ Tor(Hp−1(B;Z), Hq(F,G))

= 0 if 0 < p < r or 0 < q < s .

p

d
n

0

̸= 00

n

n− 1

r

s

Figure 3.7

Thus the nonzero terms of the spectral sequence are distributed according

to Figure 3.7. Again, we omit writing the coefficients. For the elements of the

term Er
p,q, we call p+ q their total degree. In what follows, we shall consider

only elements of total degree n < r+ s. Thus, a differential d
k
for k ≥ 2 will

be nonzero at most in the case

d
n
: En

n,0 −→ En
0,n−1 .
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We have

E2
n,0 = E3

n,0 = · · · = En
n,0

En+1
n,0 = En+2

n,0 = · · · = E∞
n,0

E2
0,n−1 = · · · = En

0,n−1

En+1
0,n−1 = · · · = E∞

0,n−1 ,

and analogously to the previous subsections, we obtain the exact sequence

0 // En+1
n,0

// En
n,0

d
n

// En
0,n−1

// En+1
0,n−1

// 0 .

E∞
n,0 E2

n,0 E2
0,n−1 E∞

0,n−1

Hn(B) Hn−1(F )

On the other hand, FpHn(E)/Fp−1Hn(E) ∼= E∞
p,n−p = 0 for p ̸= 0, n. So one

has

0 ⊂ F0Hn(E) = · · · = Fn−1Hn(E) ⊂ Hn(E)

and the exact sequence

0 −→ E∞
0,n −→ Hn(E) −→ E∞

n,0 −→ 0 .

Overlapping the exact sequences, as above, we obtain

3.4.12 Theorem. For n < r + s there is an exact sequence

· · · −→ Hn(F )
i∗−→ Hn(E)

π∗−→ Hn(B)
τ−→ Hn−1(F ) −→ · · · .

The fact that Hn(F ) −→ Hn(E) and Hn(E) −→ Hn(B) are induced by

i and π, respectively, can be proved in an analogous form to the previous

subsections. ⊓⊔

The homomorphism τ is called the transgression and has a geometric

interpretation (see, for instance, [?, 10.6]).

3.4.13 Remark. We saw in the first chapter that a Serre fibration yields

an exact sequence of homotopy sets. This last theorem shows that, at least

for some dimensions, one also has an exact sequence in homology. For the

Hopf fibration S1 i−→ S3 π−→ S2, the sequence

H3(S1) −→ H3(S3) −→ H3(S2)

is not exact. This shows that the inequality n < r + s cannot be improved

in general.
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Chapter 4

Generalized Cohomology of
Fibrations

In this chapter, we present different spectral sequences, according to the

type of fibration we are dealing with (Leray-Serre-Whitehead; Rothenberg-

Steenrod).

4.1 Introduction

In this section, we introduce the concept of a generalized cohomology theory

and the properties that will be relevant for the spectral sequences that we

construct. Then we introduce the concept of a system of local coefficients for

ordinary cohomology.

4.1.1 Generalized Cohomology Theories

4.1.1 Definition. Let Top2 be some category of pairs (X, Y ) of topological

spaces and maps of pairs. Let, moreover, Ab be the category of abelian

groups and homomorphisms. A cohomology theory h∗ on Top2 is a collection

of contravariant functors and natural transformations indexed by q ∈ Z,

hq : Top2 −→ Ab and δq : hq ◦R ·−→ hq+1,

these last called connecting homomorphisms, where R : Top2 −→ Top2 is

the functor that sends a pair (X,Y ) to the pair (Y, ∅) and the map of pairs

f : (X ′, Y ′) −→ (X,Y ) to f |Y ′ , satisfying the following axioms:

Homotopy. If f0 ≃ f1 : (X
′, Y ′) −→ (X,Y ) is a homotopy of pairs, then

f ∗
0 = f ∗

1 : hq(X, Y ) −→ hq(X ′, Y ′)



152 4 Generalized Cohomology of Fibrations

for all q ∈ Z.

Excision. For every pair of spaces (X, Y ) and a subset U ⊂ Y satisfying

U ⊂
◦
A, the inclusion j : (X −U, Y −U) −→ (X, Y ) induces an isomorphism

hq(X, Y ) ∼= hq(X − U, Y − U)

for all q ∈ Z.

Exactness. For every pair of spaces (X,A) we have a long exact sequence

· · · δ
q−1

−→hq(X, Y )
i∗−→ hq(X)

i∗−→ hq(Y )
δq−→hq+1(X, Y ) −→ · · · ,

where i : (X, ∅) ↪→ (X, Y ) and j : (Y, ∅) ↪→ (X, ∅) are the inclusions, and we

write hq(X) instead of hq(X, ∅).

4.1.2 Examples.

(a) The singular cohomology functors with coefficients in G, (X,Y ) 7→
Hq(X,Y ;G) constitute a cohomology theory for every abelian group G

in the category Top2 of all pairs of spaces. (Here, Hq(X, Y ;G) = 0 if

q < 0.)

(b) The K-theory functors (X,Y ) 7→ Kq(X, Y ) form a cohomology theory

in the category of pairs of paracompact spaces and closed subspaces.

(See [1, 9.5.9, (9.5.8), and 9.5.10].)

4.1.3 Remark. There is also the dual concept of a homology theory h∗ on

Top2, which is a collection of covariant functors and natural transformations

indexed by q ∈ Z,

hq : Top2 −→ Ab and ∂q : hq
·−→ hq−1 ◦R ,

these last called connecting homomorphisms, where as before, R : Top2 −→
Top2 maps a pair of spaces to the second space of the pair, and they satisfy

the same axioms as the cohomology with the obvious modifications.

Some examples we have of this are the ordinary homology groups with

coefficients in an abelian group G as introduced in Section ??, and given by

(X,A) 7→ Hq(X,A;G).

We shall sometimes require two further axioms for a generalized coho-

mology theory h∗.
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Weak homotopy equivalence. Given a weak homotopy equivalence f :

(X ′, Y ′) −→ (X, Y ) (see [1, 5.1.17]), then f ∗ : hq(X,Y ) −→ hq(X ′, Y ′) is an

isomorphism for all q ∈ Z.

Additivity. For every collection {(Xλ,Yλ)}λ∈Λ of pairs of topological spaces,

the inclusions iλ : (Xλ, Yλ) ↪→
⨿

µ∈Λ(Xµ, Yµ) induce an isomorphism

(i∗λ) : h
q

(⨿
λ

(Xλ, Yλ)

)
−→

∏
λ∈Λ

hq(Xλ, Yλ) .

In what follows we analyze a very interesting example of how, given a

generalized cohomology theory, one can produce a new cohomology theory

associated to a given Hurewicz fibration.

4.1.4 Definition. Let π : E −→ B be a (fixed) Hurewicz fibration and

A ⊂ B. For any map of pairs (X, Y ) −→ (B,A), let (EX , EY ) be the pair

such that EX −→ X and EY −→ Y are the fibrations induced over X and Y ,

respectively, through the given map (no confusion should arise if a different

map of pairs is taken, since as a “pair” over B it is different and thus should

be denoted differently). Set

h̄∗(X, Y ) = h∗(EX , EY ) .

4.1.5 Theorem. h̄∗ is a cohomology theory on the category TopB2 of pairs

of spaces over B and maps over B.

Proof: We check first that h̄∗ is a functor, and hence we have to see how it

applies to maps. Let f : (X ′, Y ′) −→ (X,Y ) be a map over B, namely, such

that the triangle

X ′ f //

  A
AA

AA
AA

A X

~~~~
~~
~~
~~

B

commutes. Then f induces a map of pairs f̂ : (EX′ , EY ′) −→ (EX , EY ) such

that the square

(EX′ , EY ′)
f̂ //

��

(EX , EY )

��
(X ′, Y ′)

f
// (X, Y )
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commutes, and is given by f̂(x′, e) = (f(x′), e), where (x′, e) ∈ EX′ ⊂ X ′×E.

Define the homomomorphism f̄ ∗ : h̄∗(X, Y ) −→ h̄∗(X ′, Y ′) induced by f

by

f̂ ∗ : h∗(EX , EY ) −→ h∗(EX′ , EY ′) .

One easily verifies that this is a functorial construction.

We prove now that the functors h̄∗ fulfill the axioms of a cohomology

theory.

Homotopy. If H : f0 ≃ f1 : (X
′, Y ′) −→ (X, Y ) is a homotopy over B, then

f̄ ∗
0 = f̄ ∗

1 .

Namely, consider the diagram, where for simplicity we omit writing the

second member of each pair of spaces

EX

&&NN
NNN

NN

EX′ × I EX′×I //

��

H̄ 66nnn
E

��
X

''NN
NNN

N
��

X ′ × I

H 66mmmmmm
// B ,

where H̄(e, x′, t) = (e,H(x′, t)). Then

H̄(e, x′, 0) = (e, f0(x
′)) = f̄0(x

′)

H̄(e, x′, 1) = (e, f1(x
′)) = f̄1(x

′)

This proves the homotopy. (Under the assumption that π : E −→ B is a

Hurewicz fibration, one may assume that H is any homotopy and not only

a homotopy over B.)

Exactness. Given a pair of spaces (X, Y ), there is a long exact sequence

· · · −→ h̄q(X, Y ) −→ h̄q(X) −→ h̄q(Y )
δ̄−→ h̄q+1(X,Y ) −→ · · · .

Namely, the given sequence is in fact the following:

· · · −→ hq(EX , EY ) −→ hq(EX) −→ hq(EY )
δ−→ hq+1(EX , EY ) −→ · · · ,

which is obviously exact. Note that, in particular, this provides the definition

of δ.

Excision. If U ⊂
◦
Y , then the inclusion induces an isomorphism

h̄q(X, Y ) ∼= hq(X − U, Y − U)
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for all q.

Namely, EU ⊂ EY and clearly

EU ⊂ EU ⊂ E ◦
Y
⊂

◦
EY .

Thus the assertion follows from the excision axiom for h∗. ⊓⊔

4.1.6 Remark. If h∗ satisfies the additivity axiom, then also h̄∗.

Namely, If (X, Y ) =
⨿

λ(Xλ, Yλ) −→ B, then

(EX , EY ) =
⨿
λ

(Xλ, Yλ) ,

thus the axiom for h̄∗ follows from the corresponding one for h∗.

The next is a useful result.

4.1.7 Lemma. Let π : E −→ B be a fibration and f : X −→ B, g : Y −→ B

be spaces over B. Let moreover X ′ ⊂ X, Y ′ ⊂ Y and φ : (X,X ′) −→ (Y, Y ′)

be a map over B that is also a relative homeomorphism, that is, it is a map of

pairs such that φ|X−X′ : X −X ′ −→ Y − Y ′ is a homeomorphism. Then the

induced map φ̃ : (EX , EX′) −→ (EY , EY ′) is also a relative homeomorphism.

Proof: Recall that

EX = {(x, e) | f(x) = π(e)} and EY = {(y, e) | g(x) = π(e)} .

Then φ̃(x, e) = (φ(x), e). If ψ : Y −Y ′ −→ X−X ′ is the inverse homeomor-

phism of φ|X−X′ , then the map

ψ̃ : EY − EY ′ −→ EX − EX′

given by ψ̃(y, e) = (ψ(y), e) is well defined, since y ∈ Y − Y ′, and is the

inverse of φ̃|EX−EX′ . ⊓⊔

Using 1.4.20 and 4.1.7 we have the following.

4.1.8 Theorem. Let π : E −→ B be a Hurewicz fibration and f : X −→
B, g : Y −→ B be spaces over B. Let moreover X ′ ⊂ X, Y ′ ⊂ Y be

cofibrations, and φ : (X,X ′) −→ (Y, Y ′) a map over B that is also a relative

homeomorphism. Then

φ̄ : h̄∗(Y, Y ′) −→ h̄∗(X,X ′)

is an isomorphism.
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Proof: Since by 1.4.20, EX′ ⊂ EX and EY ′ ⊂ EY are cofibrations, it follows

that

h̄∗(X,X ′) = h∗(EX , EX′) ∼= h̃∗(EX/EX′)

and

h̄∗(Y, Y ′) = h∗(EY , EY ′) ∼= h̃∗(EY /EY ′) ,

where the isomorphisms are induced by the corresponding quotient maps.

Moreover, by 4.1.7, we have that φ̃ : (EX , EX′) −→ (EY , EY ′) is a relative

homeomorphism. We have a commutative diagram

h∗(EY /EY ′)

∼=
��

φ̂∗

∼=
// h∗(EX/EX′)

∼=
��

h∗(EY , EY ′)
φ̃∗

// h∗(EX , EX′) ,

where the map φ̂ : EX/EX′ −→ EY /EY ′ is the homeomorphism induced by

the relative homeomorphism φ̃. Thus one has that φ̃∗ on the bottom is also

an isomorphism. ⊓⊔

4.1.2 Systems of Local Coefficients

4.1.9 Definition. Let B be a topological space. A system of local coeffi-

cients on B is a contravariant functor

G : Π1(B) −→ Ab ,

where Π1(B) denotes the fundamental groupoid of B (1.5.5) and Ab is the

category of abelian groups (and isomorphisms). In other words, a system of

local coefficients maps every point b ∈ B to an abelian group G(b), and every

path ω : b ≃ b′ to a group isomorphism G(ω) : G(b′) −→ G(b), in such a way

that if ω0 ≃ ω1, then G(ω0) = G(ω1).

4.1.10 Example. Let π : E −→ B be a Serre fibration. Define

G : Π1(B) −→ Ab by G(b) = Hn(π−1(b)) ,

and if ω : b ≃ b′, then let G(ω) be the composite

ω⋆ : Hn(π−1(b′)) ∼= Hn(π̃−1(1))
(1)−→ Hn(E ′)←−

(2)←− Hn(π̃−1(0)) ∼= Hn(π−1(b)) ,

where π̃ : E ′ −→ I is the fibration induced by π over ω : I −→ B. As in

Definition 3.3.11, the homomorphisms (1) and (2) induced by the inclusions

are isomorphisms.
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We call this the ordinary system of local coefficients induced by the fibra-

tion π : E −→ B on B.

4.1.11 Definition. Let h∗ be a generalized cohomology theory and π :

E −→ B a Hurewicz fibration, with a path lifting map

Γ : E ×B BI = {(e, ω) ∈ E ×BI | π(e) = ω(0)} −→ EI .

Given any path ω : b ≃ b′, define a map

α(ω) : π−1(b) −→ π−1(b′)

by α(ω)(e) = Γ(e, ω)(1).

4.1.12 Exercise. Prove the following facts:

(i) If ω0 ≃ ω1 : b ≃ b′, then α(ω0) ≃ α(ω1) : π
−1(b) −→ π−1(b′).

(ii) If ω : b ≃ b′ and ω′ : b′ ≃ b′′, then α(ωω′) ≃ α(ω′) ◦ α(ω) : π−1(b) −→
π−1(b′′).

4.1.13 Exercise. Prove that there is a category of systems of local coeffi-

cients on a space B.

4.1.14 Exercise. Prove that a map f : B −→ B′ induces a covariant func-

tor from the category of systems of local coefficients on B′ to the category

of systems of local coefficients on B. Prove that this correspondence is (con-

travariantly) functorial.

From Exercise 4.1.12 we conclude that there is a system of local coeffi-

cients as follows.

4.1.15 Theorem. Let h∗ be a generalized cohomology theory and π : E −→
B be a Hurewicz fibration. Then the mapping

[ω] 7−→ α(ω)∗ : hp(π−1(b′)) −→ hp(π−1(b))

determines a system of local coefficients. We call this the hp-system of local

coefficients induced by the fibration π : E −→ B on B, and denote it by

hp(F). ⊓⊔

4.1.16 Exercise. Prove that if h∗ is ordinary cohomology, then the system

of local coefficients hp(F) is the system of local coefficients G given in 4.1.10.
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4.1.3 Singular Homology and Cohomology with
Local Coefficients

4.1.17 Definition. Fix a system of local coefficients G on a space X, and

denote by ∆p(X) the set of singular p-simplexes on X, and by e0 the leading

vertex of ∆p α : ∆p −→ X. Define

Sp(X;G)
= {functions s : ∆p(X) −→

∪
x∈X G(x) | s(α) ∈ G(α(e0)), s(α) ̸= 0 for only

finitely many singular maps α ∈ ∆p(X)}
=
⊕

α∈∆p(X) G(α(e0)).

We call the elements of Sp(X;G) the singular p-chains on X with coefficients

in G. A p-chain s is said to be elementary if s(α) ̸= 0 for only one p-simplex

α ∈ ∆p(X). Thus a general p-chain s with coefficients in G can be written

as a finite formal sum of elementary p-chains

s =
∑

giαi , where gi ∈ G(αi(e0)) .

This explains the second equality.

Dually we define

Sp(X;G)
= {functions s : ∆p(X) −→

∪
x∈X G(x) | s(α) ∈ G(α(e0))}

=
∏

α∈∆p(X) G(α(e0)).

We call the elements of Sp(X;G) the singular p-cochains on X with coeffi-

cients in G.

In order to describe a boundary operator on S∗(X;G), we observe that

the usual singular boundary operator behaves as follows with respect to the

leading vertex e0:

∂iα =

{
α(e0) if i ̸= 0,

α(e1) if i = 0.

In the case of local coefficients, the coefficients on certain simplex depend

on the leading vertex, so we have to include a change of leading vertex. Let

α : ∆p −→ X be a p-simplex and take the path

ωα(t) = α(te0 + (1− t)e1)

from α(e0) to α(e1). Define

(4.1.17) ∂s = ∂

(∑
i

giαi

)
=
∑
i

(
G(ωαi)(gi)∂0αi +

p∑
j=1

(−1)jgi∂jαi

)
.
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The homomorphism ∂ is a differential; namely, we have the following.

4.1.18 Lemma. ∂ ◦ ∂ = 0.

Proof: Just observe that ω∂iα = ωα if i > 1 and ω∂1α = ω∂0αωα, and do the

computations. ⊓⊔

4.1.19 Definition. We define the (singular) homology of X with local co-

efficients in G to be

H∗(X;G) = H(S∗(X;G), ∂) .

This is a generalization of singular homology with regular coefficients as

shown in the following.

4.1.20 Proposition. If the system of local coefficients G is trivial or con-

stant with value G, then H∗(X;G) ∼= H∗(X;G).

Proof: If G is trivial, then there exists a group isomorphism Φx : G(x) −→ G

for each x such that given any path ω in X, the diagram

G(ω(1))

Φω(1) ##G
GG

GG
GG

GG

G(ω) // G(ω(0))

Φω(1){{ww
ww
ww
ww
w

G

commutes. Thus, the isomorphisms Φx determine an isomorphism of chain

complexes S∗(X;G) −→ S∗(X;G). If the system of local coefficients is con-

stant, then G(x) = G for every x ∈ X, and G(ω) = 1G for every path ω in X.

In this case, S∗(X;G) = S∗(X;G) and Formula 4.1.17 reduces to the regular

boundary operator and so H∗(X;G) = H∗(X;G). ⊓⊔

We now describe a boundary operator in S∗(X;G) as follows.

(4.1.21) (−1)pδs(α) = G(ωα)(s(∂0α)) +
p+1∑
i=1

(−1)is(∂iα) ,

for α ∈ ∆p+1(X) and s ∈ Sp(X).

Similarly to 4.1.18, one can prove the following.

4.1.22 Lemma. δ ◦ δ = 0. ⊓⊔
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4.1.23 Definition. We define the (singular) cohomology of X with local

coefficients in G to be

H∗(X;G) = H(S∗(X;G), δ) .

As in 4.1.20, we have the following.

4.1.24 Proposition. If the system of local coefficients G is trivial or con-

stant with value G, then H∗(X;G) ∼= H∗(X;G). ⊓⊔

If A ⊂ X and G is a system of local coefficients on X, then we may

consider the restriction G|A of G to A by taking the composition of the

functor G with the morphism of fundamental groupoids Π1(A) −→ Π1(X).

The inclusion S∗(A;G|A) −→ S∗(X;G) has a cokernel that we denote by

S∗(X,A;G).

4.1.25 Definition. The (singular) homology of the pair (X,A) with local

coefficients in G is given by

H∗(X,A;G) = H∗(S∗(X,A;G)) ,

and the short exact sequence of chain complexes

0 −→ S∗(A;G|A) −→ S∗(X;G) −→ S∗(X,A;G) −→ 0

provides the long exact sequence in homology of a pair

· · · → Hp+1(X,A;G)
∂−→ Hp(A;G|A)→ Hp(X;G)→ Hp(X,A;G)→ · · · .

This is the Exactness axiom for homology with local coefficients.

More generally than above, given any map f : Y −→ X and a system of

local coefficients G on X, we may induce a system of local coefficients f ∗G on

Y by composing the functor G with the groupoid morphism f∗ : Π1(Y ) −→
Π1(X). Thus f ∗G(y) = G(f(y)) for y ∈ Y , and f ∗G(β) = G(f ◦ β) for any
path β in Y . This induces a homomorphism

f∗ : H∗(Y ; f ∗G) −→ H∗(X;G) .

Similarly, a morphism of systems of local coefficients on X Φ : G −→ H,
namely a natural transformation of functors, or explicitely, a family of ho-

momorphisms

Φx : G(x) −→ H(x)
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such that for any path α : x0 ≃ x1 the diagram

G(x0)
G(α) //

Φx0
��

G(x1)
Φx1
��

H(x0) H(α)
//H(x1)

commutes, induces a homomorphism

Φ̂ : H∗(X;G) −→ H∗(X;H) .

4.1.26 Exercise. Let G be a system of local coefficients on X and let g :

Z −→ Y , f : Y −→ X be continuous maps. Prove that the induced systems

of local coefficients (f ◦ g)∗G and g∗f ∗G are equal. Prove, moreover, that the

diagram

H∗(Z; g
∗f ∗G) (f◦g)∗ //

g∗ ((QQ
QQQ

QQQ
QQQ

Q
H∗(X;G)

H∗(Y ; f ∗G)
f∗

77ooooooooooo

commutes. This is the Functoriality axiom for homology with local coeffi-

cients.

4.1.27 Exercise. Let G be a system of local coefficients on X, and let

f0, f1 : Y −→ X be homotopic maps. Prove that the induced systems of

local coefficients f ∗
0G and f ∗

1G are isomorphic, say by an isomorphism of

systems of local coefficients Φ : f ∗
0G −→ f ∗

1G. Prove, moreover, that the

homomorphisms induced by f0 and f1 in homology with local coefficients in

G coincide up to the isomorphism, namely, that the diagram

H∗(Y ; f ∗
0G)

Φ̂

��

f0∗
**TTT

TTTT

H∗(X;G)

H∗(Y ; f ∗
1G)

f1∗

44jjjjjjj

commutes. This is the Homotopy axiom for homology with local coeffi-

cients.

4.1.28 Exercise. Let G be a system of local coefficients on X and let A ⊂
X. Let moreover U ⊂

◦
A. Prove that the inclusion of pairs (X−U,A−U) ↪→

(X,A) induces an isomorphism

H∗(X − U,A− U ;G) −→ H∗(X,A;G) .
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(Hint: Compare with the proof of [14, 4.6.5].) This is the Excision axiom

for homology with local coefficients.

4.1.29 Exercise. Observe that a system of local coefficients G on a singular

space ∗ is nothing but an abelian group G = G(∗). Prove that

Hp(∗;G) =

{
G if p = 0,

0 if p ̸= 0.

This is the Dimension axiom for homology with local coefficients.

The previous exercises show that homology with local coefficients satisfies

axioms similar to the Eilenberg–Steenrod axioms (cf. Subsection 4.1.1 or see

[1]). There is one more axiom that also plays an important role; namely, we

have the following.

4.1.30 Exercise. Take pairs of spaces (Xα, Aα), with the indexes α varying

in any set Φ. Let iβ : (Xβ, Aβ) ∈
⨿

α∈Φ (Xα, Aα), β ∈ Φ, be the canonical in-

clusion of each of the pairs into their topological sum. If G is a system of local

coefficients on the the topological sum and Gα = i∗αG is the induced system

on each summand, then prove that the inclusions provide an isomorphism⊕
α∈Φ

Hp (Xα, Aα;Gα)
∼=−→ Hp

(⨿
α∈Φ

(Xα, Aα) ;G

)
.

This is the Additivity axiom for homology with local coefficients.

Take again A ⊂ X and assume that G is a system of local coefficients

on X. Let G|A be the restriction of G to A. The projection S∗(X;G) −→
S∗(A;G|A) has a kernel that we denote by S∗(X,A;G).

4.1.31 Definition. The (singular) cohomology of the pair (X,A) with local

coefficients in G is given by

H∗(X,A;G) = H∗(S∗(X,A;G)) ,

and the short exact sequence of cochain complexes

0 −→ S∗(X,A;G) −→ S∗(X;G) −→ S∗(A;G|A) −→ 0

provides the long exact sequence in cohomology of a pair

· · · → Hp(X,A;G)→ Hp(X;G)→ Hp(A;G|A)
δ−→ Hp+1(X,A;G)→ · · · .

This is the Exactness axiom for cohomology with local coefficients.
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Similarly to Exercise 4.1.30, one can solve the following.

4.1.32 Exercise. Under the same assumptions of Exercise 4.1.30, prove

that the inclusions provide an isomorphism

Hp

(⨿
α∈Φ

(Xα, Aα) ;G

)
∼=−→
∏
α∈Φ

Hp (Xα, Aα;Gα) .

This is the Additivity axiom for cohomology with local coefficients.

4.1.33 Exercise. Give a proper formulation of the remaining axioms cor-

responding to the Eilenberg–Steenrod axioms for cohomology with local co-

efficients and prove them.

A slightly more general treatment of singular homology and cohomology

with local coefficients can be read in [17].

4.1.4 Cellular Homology and Cohomology with
Local Coefficients

Assume that (X,A) is a relative CW-complex and let

A = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xp ⊂ Xp+1 ⊂ · · ·

be its skeletal filtration, that is, for each p ≥ 0 there are characteristic maps

φ : (∆p, ∆̇p) −→ (Xp, Xp−1), such that the induced map

Xp−1 ⊔
⨿
φ∈Φp

∆p −→ Xp

is an identification.

4.1.34 Definition. Suppose that (X,A) is a relative CW-complex and G
a system of local coefficients on X. If we denote by Xp the p-skeleton of

(X,A), p ≥ 0, and X−1 = A, we define the cellular complex of (X,A) with

local coefficients in G by

Cp(X,A;G) = Hp(X
p, Xp−1;G) ,

and

∂ : Cp(X,A;G) −→ Cp−1(X,A;G)

is the boundary operator of the triple (Xp, Xp−1, Xp−2).
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4.1.35 Proposition. Assume that {φα : (∆p
α, ∆̇

p
α) −→ (Xp, Xp−1)} is a

collection of p-cells for (X,A). Then

(φα∗) :
⊕

α∈Φp(X,A)

Hp(∆
p
α, ∆̇

p
α;Gα) −→ Hp(X

p, Xp−1;G) = Cp(X,A;G)

determines a direct sum decomposition of Cp(X,A;G), where ∆p
α is a copy

of ∆p and Gα denotes the local coefficient group G(φα(e0)).

Proof: The totality of the maps φα determine a relative homeomorphism

(4.1.36) φ :
⨿

α∈Φp(X,A)

(
∆p
α, ∆̇

p
α

)
−→ (Xp, Xp−1)

between CW-pairs. Thus it induces an isomorphism in homology. Since

singular homology with local coefficients is additive (see Exercise 4.1.30), we

have that the inclusions of the summands into the topological sum induce an

isomorphism

(4.1.37)
⊕

α∈Φp(X,A)

Hp

(
∆p
α, ∆̇

p
α;φ

∗
αG
)
∼= Hp

 ⨿
α∈Φp(X,A)

(
∆p
α, ∆̇

p
α

)
;φ∗G

 .

On the other hand, since ∆p is contractible, the system of local coefficients on

∆p induced by G through φα is trivial. Hence, the result follows combining

Equations (4.1.36) and (4.1.37), after applying 4.1.20. ⊓⊔

It is useful to describe ∂ : Cp(X,A;G) −→ Cp−1(X,A;G) in terms of the

direct sum decomposition given in the last result. In order to do it, we need

the concept of incidence isomorphism, that can be defined as follows.

Suppose that ∆p−1
i is the ith face of the simplex ∆p, fact that we denote

by ∆p−1
i < ∆p. The maps of pairs

(4.1.38)
(
∆p−1
i , ∆̇p−1

i

)
j−→
(
∆̇p, ∆̇p −

(
∆p−1
i − ∆̇p−1

i

))
−→

(
∆p, ∆̇p

)
induce isomorphisms

Hp

(
∆p, ∆̇p

)
∂−→ Hp−1

(
∆̇p,

(
∆p−1
i − ∆̇p−1

i

))
j∗←− Hp−1

(
∆p−1
i , ∆̇p−1

i

)
,

where the connecting homomorphism ∂ on the left-hand side is an isomor-

phism by the exact sequence of the triple (∆p, ∆̇p, (∆p−1−∆̇p−1
i )), since both

the first and the third spaces of it are contractible, while j∗ on the right-hand

side is an isomorphism by excision. We define

[∆p,∆p−1
i ] = j−1

∗ ◦ ∂ .
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Let φ : ∆p −→ Xp be the characteristic map for a p-cell of the CW-

complex X, and ∆p−1
i be the ith face of ∆p. Then φ provides a map of

pairs φ : (∆p,∆p−1
i ) −→ (Xp, Xp−1). If φ(e0) is the image of the leading

vertex of ∆p, let ei0 denote the image of the leading vertex of ∆p
i . Since

∆p is convex, we get a straight path t 7→ φ(te0 + (1 − t)ei0) in X which we

denote by λ(∆p,∆p−1
i , φ). On the other hand, we denote by ⟨∆p,∆p−1

i , φ⟩
the isomorphism λ(∆p,∆p−1

i , φ)⋆ : G(φ(e0)) −→ G(φ(ei0)). Then we have the

following.

4.1.39 Theorem. The boundary homomorphism of the cellular complex of

a pair of spaces (X,A), ∂ : Cp(X,A;G) −→ Cp−1(X,A;G), can be expressed

in terms of the direct sum decompositions given in Theorem 4.1.35

∂ :
⊕
α

Hp(∆
p
α, ∆̇

p
α)⊗Gα −→

⊕
β

Hp(∆
p−1
β , ∆̇p−1

β )⊗Gβ

by

∂(u⊗ g) =
∑

∆p−1
β <∆pα

[∆p
α,∆

p−1
β ](u)⊗ ⟨∆p,∆p−1

i , φ⟩(g) .

Dually to the previous considerations we have the following.

4.1.40 Definition. Given a relative CW-complex (X,A) and a system of

local coefficients G on X, we define the cellular cocomplex of (X,A) with local

coefficients in G by

Cp(X,A;G) = Hp(Xp, Xp−1;G) ,

and take

δ : Cp−1(X,A;G) −→ Cp(X,A;G)

to be the coboundary operator of the triple (Xp, Xp−1, Xp−2).

Similarly to 4.1.35, we have the following.

4.1.41 Proposition. Assume that {φα : (∆p
α, ∆̇

p
α) −→ (Xp, Xp−1)} is a

collection of p-cells for (X,A). Then

(φ∗
α) : C

p(X,A;G) = Hp(Xp, Xp−1;G) −→
∏

α∈∆p(X,A)

Hp(∆p
α, ∆̇

p
α;Gα)

determines a direct product decomposition of Cp(X,A;G), where Gα denotes

the local coefficient group G(φα(e0)). ⊓⊔
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In order to describe δ : Cp−1(X,A;G) −→ Cp(X,A;G) in terms of the

direct product decomposition just given, we need the dual concept of coin-

cidence isomorphism as follows.

Again the maps of pairs (4.1.38) give rise to isomorphisms

Hp−1
(
∆p−1
i , ∆̇p−1

i

)
j∗←− Hp−1

(
∆̇p, ∆̇p −

(
∆p−1
i − ∆̇p−1

i

))
δ−→ Hp

(
∆p, ∆̇p

)
and we define

[∆p,∆p−1
i ]∗ = δ ◦ j∗−1 .

If we take ⟨∆p,∆p−1
i , φ⟩ : G(φ(e0)) −→ G(φ(ei0)) as before, we have

4.1.42 Theorem. The coboundary homomorphism of the cellular cocomplex

of a pair of spaces (X,A), δ : Cp−1(X,A;G) −→ Cp(X,A;G), can be ex-

pressed in terms of the direct product decompositions given in Theorem 4.1.41

δ :
∏
β

Hp−1(∆p−1
β , ∆̇p−1

β )⊗Gβ −→
∏
α

Hp(∆p
α, ∆̇

p
α)⊗Gα

by

(−1)p−1δα((uβ ⊗ gβ)β) =
∑

∆p−1
β <∆pα

[∆p
α,∆

p−1
β ]∗(uβ)⊗ ⟨∆p

α,∆
p−1
β , φ⟩−1(gβ) .

in each factor Hp(∆p
α, ∆̇

p
α) ⊗ Gα. Observe that the sum on the right-hand

side is always finite.

4.1.43 Theorem. Let h∗ be any cohomology theory and let F be any topo-

logical space. For fixed q, there are isomorphisms

ξp : hp+q
((

∆p−1, ∆̇p−1
)
× F

) ∼=−→ Hp
(
∆p, ∆̇p

)
⊗ hq(F ) .

Proof: Recall the inclusions (4.1.38) and take the topological product with

F to obtain inclusions(
∆p−1
i , ∆̇p−1

i

)
× F jF−→

(
∆̇p, ∆̇p −

(
∆p−1
i − ∆̇p−1

i

))
× F −→

(
∆p, ∆̇p

)
× F .

We proceed inductively on p. Consider p = 1 and the diagram

h1+q((∆1, ∆̇1)× F )

ξ1

��

hq(F )

δ◦j∗−1
F

33ggggggggggggg

(δ◦j∗−1)⊗1 ++WWWW
WWWWW

WWW

H1(∆1, ∆̇1)⊗ hq(F ) ,
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where δ on the top corresponds to the triple (∆1, ∆̇1,∆0)×F , while the one
on the bottom corresponds to (∆1, ∆̇1,∆0) (observe that ∆0 is a singular

space consisting of the origin). Since the tilted arrows are isomorphisms, we

may define ξ1 just to make the diagram commutative. It is obviously an

isomorphism.

Assume ξp−1 already constructed, then take the diagram

hp−1+q((∆p−1
i , ∆̇p−1

i )× F )
δ◦j∗−1

F //

ξp−1

��

hp+q((∆p, ∆̇p)× F )
ξp

��

Hp−1(∆p−1
i , ∆̇p−1

i )⊗ hq(F )
δ◦j∗−1⊗1

// Hp(∆p, ∆̇p)⊗ hq(F ) ,

where δ on the top corresponds to the triple (∆p, ∆̇p, (∆p−1 − ∆̇p−1
i )) × F ,

while the one on the bottom to (∆p, ∆̇p, (∆p−1−∆̇p−1
i )). Since the horizontal

arrows are isomorphisms, so as also is the left arrow, we may define ξp to be

an isomorphism such that the diagram commutes. ⊓⊔

4.2 The Leray-Serre Spectral Sequence

for Generalized Cohomology

We modify slightly the construction 3.3.1 given in Chapter 3. We assume

that h∗ is a generalized cohomology theory.

4.2.1 Construction. Let π : E −→ B be a Hurewicz fibration over B,

where (B,A) is a relative CW-complex. Denote by Bp the p-skeleton and by

Ep its inverse image under π, π−1(Bp), p ≥ 0. In particular, set E−1 = π−1A

if p < 0. We have an exact couple (see 3.2.9).

(4.2.2)

A∗∗ i // A∗∗

k{{ww
ww
ww
ww
w

C∗∗ ,

j

ccGGGGGGGGG

given by the definitions

Ap,q = hp+q(Ep) ,

Cp,q = hp+q(Ep, Eq) ,

i : hp+q(Ep+1) −→ hp+q(Ep) ,

j : hp+q(Ep, Ep−1) −→ hp+q(Ep) ,
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that are induced by the canonical inclusions, and

k : hp+q−1(Ep−1) −→ hp+q(Ep, Ep−1)

given by the boundary homomorphism δ.

Dually to 3.3.1, the bidegrees of these homomorphisms clearly are:

bideg(i) = (−1, 1) ,
bideg(j) = (0, 0) ,

bideg(k) = (1, 0) ,

now with the opposite signs as in 3.3.1.

Dually as in 3.2.17, take r ≥ 1, r ∈ Z, i0 = idA.

dp,qr = k(ir−1)−1j : Cp,q −→ Cp+r,q−r+1 ,

Zp,q
r = Def(dp,qr ) ,

Bp,q
r = Ind(dp+r,q−r+1

r ) ,

Zp,q
∞ =

∞∩
r=1

Zp,q
r ,

Bp,q
∞ =

∞∪
r=1

Bp,q
r ,

Ep,q
r = Zp,q

r /Bp,q
r , 1 ≤ r ≤ ∞ .

Similarly to Section 3.2, we have that dp,qr : Cp,q −→ Cp+r,q−r+1 induces

a homomorphism

d
p,q

r : Ep,q
r −→ Ep+r,q−r+1

r ,

and one has the following result dual to 3.2.19.

4.2.3 Theorem. The pair (Er, dr) is a cochain complex and its cohomology

satisfies

Hp,q(Er, dr) ∼= Ep,q
r+1 ;

that is, (Er, dr), r = 1, 2, . . . , is a spectral sequence.
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4.2.1 Computation of the E1-term of the
Spectral Sequence

Take a characteristic map φ : ∆p −→ Bp and take the fibration induced by

π through φ, namely, take the diagram

Tφ
φ̃ //

��

Ep

π

��
∆p

φ
// Bp .

Since ∆p is contractible, by 1.4.30, there is a (well-defined up to fiber homo-

topy) trivialization

αφ : ∆p × Fφ(e0) −→ Tφ ,

where as above Fφ(e0) represents the fiber π
−1(φ(e0)). Consider the composite

κφ : hp+q(Ep, Ep−1)
φ̃∗
−→ hp+q(Tφ, Ṫφ)

α∗
φ−→ hp+q((∆p, ∆̇p)× Fφ(e0)))
ξp−→ Hp(∆p, ∆̇p)⊗ hq(Fφ(e0))) ,

where Ṫφ is the restriction of Tφ to the boundary ∆̇p of ∆p, and ξp is the

isomorphism given in Theorem 4.1.43. Since by 1.4.26 the map of pairs

αφ : (∆p, ∆̇p) × Fφ(e0)) −→ (Tφ, Ṫφ) is a (fiber) homotopy equivalence, the

homomorphism α∗
φ is also an isomorphism.

In what follows, we prove that the homomorphism

κ = (κφ) : h
p+q(Ep, Ep−1) −→

∏
φ∈Φp

Hp(∆p, ∆̇p)⊗hq(Fφ(e0)) = Cp(B,A;hq(F))

is an isomorphism. For that, it is enough to see that the maps φ̃∗ determine

an isomorphism

κ′ = (φ̃∗) : hp+q(Ep, Ep−1) −→
∏
φ∈Φp

hp+q(Tφ, Ṫφ) .

We have the following.

4.2.4 Lemma. The homomorphism

κ′ = (φ̃∗) : hp+q(Ep, Ep−1) −→
∏
φ∈Φp

hp+q(Tφ, Ṫφ)

is an isomorphism.
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Proof: According to Definition 4.1.4, we have to prove that

κ̄′ = (φ̄∗) : h̄(Bp, Bp−1) −→
∏
φ∈Φp

h̄(∆p, ∆̇p)

is an isomorphism. The map

(φ̄) :
⨿
φ∈Φp

(∆p, ∆̇p) −→ (Bp, Bp−1)

is a relative homeomorphism, since it induces a homeomorphism⨿
φ∈Φp

◦
∆
p−→ Bp −Bp−1 .

Given that both, the inclusion
⨿

φ∈Φp ∆̇
p ↪→

⨿
φ∈Φp ∆

p, and the inclusion

Bp−1 ↪→ Bp are cofibrations, by 4.1.8 we have an isomorphism

(φ̄)∗ : h̄p(Bp, Bp−1) −→ h̄p

⨿
φ∈Φp

(∆p, ∆̇p)

 .

But since the cohomology theory h∗ is additive, then so is also h̄∗ (see

4.1.6); hence the homomorphisms induced by the inclusions iφ : (∆p, ∆̇p) ↪→⨿
φ∈Φp(∆

p, ∆̇p) yield an isomorphism

h̄p

⨿
φ∈Φp

(∆p, ∆̇p)

 ∼= ∏
φ∈Φp

h̄(∆p, ∆̇p) .

Thus the homomorphism induced by (φ̄) in cohomology, namely κ̄′, is an

isomorphism. ⊓⊔

4.2.5 Theorem. Let π : E −→ B be a Hurewicz fibration. If (B,A) is

a relative CW-complex and Ep,q
∗ is the spectral sequence associated to the

filtration of E induced by the skeletal filtration of (B,A), then one has for

the E1-term an isomorphism

κ : Ep,q
1 −→ Cp(B,A;hq(F)) ,

where Cp(B;hq(F)) is the cellular cocomplex of B with local coefficients de-

termined by hq(π−1(b)), b ∈ B. ⊓⊔
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4.2.2 Computation of the E2-term of the
Spectral Sequence

In what follows, we prove that the isomorphism

κ = (κφ) : h
p+q(Ep, Ep−1) −→

∏
φ∈Φp

Hp(∆p, ∆̇p)⊗hq(Fφ(e0)) = Cp(B,A;hq(F))

commutes with the corresponding coboundary homomorphisms (see 4.1.40).

We have the following result.

4.2.6 Lemma. The following is a commutative diagram:

hp+q(Ep, Ep−1) κ //

δ
��

Cp(B,A;hq(F))
(−1)pδ
��

hp+q+1(Ep+1, Ep) κ // Cp+1(B,A;hq(F)) ,

where δ on the left-hand side is the connecting homomorphism for the triple

(Ep+1, Ep, Ep−1) and δ on the right-hand side represents the coboundary op-

erator of the cellular cochain complex of the pair (B,A) with local coefficients

in hq(F) (see 4.1.40).

Proof: We have to prove the commutativity of the diagram

(4.2.7)

hp+q(Ep, Ep−1)

δ

��

//
∏

βH
p(∆p

β, ∆̇
p
β)⊗ hq(Fφβ(eβ0 ))

(−1)pδ
��

hp+q+1(Ep+1, Ep) //
∏

αH
p+1(∆p+1

α , ∆̇p+1
α )⊗ hq(Fφα(eα0 )) ,

where the homomorphism δ on the right-hand side is as given in Theorem

4.1.42, while the horizontal arrows are given by composing κ with the iso-

morphism given in Proposition 4.1.41; Fφ(e0) denotes the fiber of π over the

image of the leading vertex under the corresponding characteristic map.

We take the following diagrams:

hp+q(Ep, Ep−1)

δ

��

∼= // hp+q(
⨿

β(∆
p
β, ∆̇

p
β)× Fφβ(eβ0 ))

δ
��

hp+q+1(Ep+1, Ep)
∼= // hp+q+1(

⨿
α(∆

p+1
α , ∆̇p+1

α )× Fφα(eα0 )) .
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Since both vertical arrows are given by connecting homomorphisms, that are

natural, and inclusion maps, the commutativity of this diagram is quite clear.

hp+q(
⨿

β(∆
p
β, ∆̇

p
β)× Fφβ(eβ0 ))

δ
��

∼= //
∏

β h
p+q((∆p

β, ∆̇
p
β)× Fφβ(eβ0 ))

δ
��

hp+q+1(
⨿

α(∆
p+1
α , ∆̇p+1

α )× Fφα(eα0 ))
∼= //

∏
α h

p+q+1((∆p+1
α , ∆̇p+1

α )× Fφα(eα0 )) .

This diagram commutes by naturality arguments, since both coboundary

homomorphisms δ are given by the same formula.

∏
β h

p+q((∆p
β, ∆̇

p
β)× Fφβ(eβ0 ))

ξp+q

∼=
//

δ
��

∏
βH

p(∆p
β, ∆̇

p
β)⊗ hq(Fφβ(eβ0 ))

(−1)pδ
��∏

α h
p+q+1((∆p+1

α , ∆̇p+1
α )× Fφα(eα0 )) ξp+q+1

∼= //
∏

α h
p+1(∆p+1

α , ∆̇p+1
α )× hq(Fφα(eα0 )) ,

where the isomorphisms ξ are given in 4.1.43. This last diagram commutes

because the definiton of the coboundary homomorphism on the right-hand

side is given using the coincidence isomorphisms defined in page 166 previous

to Theorem 4.1.42, that correspond precisely to the way that the coboundary

homomorphism on the left-hand side is defined, and the sign comes from

Theorem 4.1.42.

Putting these three diagrams together, we obtain the commutativity of

Diagram (4.2.7), as desired. ⊓⊔

From Lemma 4.2.6, we obtain immediately the main result of this para-

graph.

4.2.8 Theorem. Let π : E −→ B be a Hurewicz fibration. If (B,A) is

a relative CW-complex and Ep,q
∗ is the spectral sequence associated to the

filtration of E induced by the skeletal filtration of B, then one has for the

E2-term an isomorphism

κ∗ : Ep,q
2 −→ Hp(B,A;hq(F)) ,

where Hp(B;hq(F)) is the cellular cohomology of (B,A) with local coefficients

determined by hq(π−1(b)), b ∈ B. ⊓⊔
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